{"title":"逃离敌人增强入侵者的相互作用:代谢物的作用。","authors":"Baoliang Tian, Jianqing Ding, Wei Huang, Evan Siemann","doi":"10.1016/j.tree.2025.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Non-native plants often outperform native plants by escaping natural enemies and forming mutualistic relationships in new ranges. However, the causal relationships and mechanisms linking these interactions remain largely unclear. Metabolite reallocation may play a crucial role in linking ecological and evolutionary shifts between antagonistic and mutualistic interactions of non-native plants.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"945-948"},"PeriodicalIF":17.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Escaping enemies enhances invader mutualisms: role of metabolites.\",\"authors\":\"Baoliang Tian, Jianqing Ding, Wei Huang, Evan Siemann\",\"doi\":\"10.1016/j.tree.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-native plants often outperform native plants by escaping natural enemies and forming mutualistic relationships in new ranges. However, the causal relationships and mechanisms linking these interactions remain largely unclear. Metabolite reallocation may play a crucial role in linking ecological and evolutionary shifts between antagonistic and mutualistic interactions of non-native plants.</p>\",\"PeriodicalId\":23274,\"journal\":{\"name\":\"Trends in ecology & evolution\",\"volume\":\" \",\"pages\":\"945-948\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tree.2025.08.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2025.08.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Escaping enemies enhances invader mutualisms: role of metabolites.
Non-native plants often outperform native plants by escaping natural enemies and forming mutualistic relationships in new ranges. However, the causal relationships and mechanisms linking these interactions remain largely unclear. Metabolite reallocation may play a crucial role in linking ecological and evolutionary shifts between antagonistic and mutualistic interactions of non-native plants.
期刊介绍:
Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.