Jaeseong Jeong , Keon Kang , Hyunwoo Kim , Chaein Chong , Jeongeun Im , Jin-Sung Park , Minhaeng Cho , Jinhee Choi
{"title":"微塑料在人类干细胞中的发育毒性,基于不良结果通路的综合方法测试和评估方法。","authors":"Jaeseong Jeong , Keon Kang , Hyunwoo Kim , Chaein Chong , Jeongeun Im , Jin-Sung Park , Minhaeng Cho , Jinhee Choi","doi":"10.1016/j.tox.2025.154268","DOIUrl":null,"url":null,"abstract":"<div><div>Micro/nanoplastics (MNPs), detected in human tissues including the placenta, raise significant concerns regarding their potential impact on early human development. However, the mechanisms underlying their developmental toxicity remain poorly understood. To address this, we applied an Integrated Approaches to Testing and Assessment (IATA) framework to evaluate the developmental toxicity of polystyrene (PS) MNPs by combining adverse outcome pathway (AOP) development, experimental testing within an Integrated Testing Strategy (ITS), and literature-based data integration. As part of the ITS, experimental evaluations were conducted using human embryonic stem cells (ESCs) to assess PS MNP uptake, effects on germ layer differentiation, and size-dependent cytotoxicity. To further refine the assessment, an IATA approach was applied by integrating independent findings from the literature, strengthening the weight of evidence for AOP-based hazard evaluation. The alignment between ESC-based results and broader toxicological data enhances the predictive capacity of developmental toxicity assessments and supports the regulatory application of non-animal testing strategies. These findings contribute to the advancement of mechanism-based, human-relevant toxicity evaluation and provide a structured framework for assessing the developmental risks associated with emerging contaminants like MNPs.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"518 ","pages":"Article 154268"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developmental toxicity of microplastics in human stem cells using adverse outcome pathway based integrated approaches to testing and assessment approach\",\"authors\":\"Jaeseong Jeong , Keon Kang , Hyunwoo Kim , Chaein Chong , Jeongeun Im , Jin-Sung Park , Minhaeng Cho , Jinhee Choi\",\"doi\":\"10.1016/j.tox.2025.154268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Micro/nanoplastics (MNPs), detected in human tissues including the placenta, raise significant concerns regarding their potential impact on early human development. However, the mechanisms underlying their developmental toxicity remain poorly understood. To address this, we applied an Integrated Approaches to Testing and Assessment (IATA) framework to evaluate the developmental toxicity of polystyrene (PS) MNPs by combining adverse outcome pathway (AOP) development, experimental testing within an Integrated Testing Strategy (ITS), and literature-based data integration. As part of the ITS, experimental evaluations were conducted using human embryonic stem cells (ESCs) to assess PS MNP uptake, effects on germ layer differentiation, and size-dependent cytotoxicity. To further refine the assessment, an IATA approach was applied by integrating independent findings from the literature, strengthening the weight of evidence for AOP-based hazard evaluation. The alignment between ESC-based results and broader toxicological data enhances the predictive capacity of developmental toxicity assessments and supports the regulatory application of non-animal testing strategies. These findings contribute to the advancement of mechanism-based, human-relevant toxicity evaluation and provide a structured framework for assessing the developmental risks associated with emerging contaminants like MNPs.</div></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\"518 \",\"pages\":\"Article 154268\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X25002276\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X25002276","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Developmental toxicity of microplastics in human stem cells using adverse outcome pathway based integrated approaches to testing and assessment approach
Micro/nanoplastics (MNPs), detected in human tissues including the placenta, raise significant concerns regarding their potential impact on early human development. However, the mechanisms underlying their developmental toxicity remain poorly understood. To address this, we applied an Integrated Approaches to Testing and Assessment (IATA) framework to evaluate the developmental toxicity of polystyrene (PS) MNPs by combining adverse outcome pathway (AOP) development, experimental testing within an Integrated Testing Strategy (ITS), and literature-based data integration. As part of the ITS, experimental evaluations were conducted using human embryonic stem cells (ESCs) to assess PS MNP uptake, effects on germ layer differentiation, and size-dependent cytotoxicity. To further refine the assessment, an IATA approach was applied by integrating independent findings from the literature, strengthening the weight of evidence for AOP-based hazard evaluation. The alignment between ESC-based results and broader toxicological data enhances the predictive capacity of developmental toxicity assessments and supports the regulatory application of non-animal testing strategies. These findings contribute to the advancement of mechanism-based, human-relevant toxicity evaluation and provide a structured framework for assessing the developmental risks associated with emerging contaminants like MNPs.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.