利用大数据增强冬小麦育种全基因组预测。

IF 4.2 1区 农林科学 Q1 AGRONOMY
Ravindra Reddy Gundala, Ulrike Avenhaus, Jost Doernte, Wera Maria Eckhoff, Jutta Foerster, Mario Gils, Michael Koch, Martin Kirchhoff, Sonja Kollers, Nina Pfeiffer, Matthias Rapp, Monika Spiller, Valentin Wimmer, Markus Wolf, Yusheng Zhao, Jochen Christoph Reif
{"title":"利用大数据增强冬小麦育种全基因组预测。","authors":"Ravindra Reddy Gundala, Ulrike Avenhaus, Jost Doernte, Wera Maria Eckhoff, Jutta Foerster, Mario Gils, Michael Koch, Martin Kirchhoff, Sonja Kollers, Nina Pfeiffer, Matthias Rapp, Monika Spiller, Valentin Wimmer, Markus Wolf, Yusheng Zhao, Jochen Christoph Reif","doi":"10.1007/s00122-025-05007-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>By combining data from different public and private breeding programs for genomic selection, we have increased the size and diversity of the training population, which has led to better predictions of grain yield and plant height in winter wheat compared to using individual training sets. The accuracy of genome-wide prediction is anticipated to improve with an increase in training population size. In our study, we assembled a comprehensive wheat data set consisting of about 18,000 inbred lines and phenotypic data from about 250,000 plots. We evaluated the potential to train genome-wide prediction models using this big data set through data from post-registration trials conducted across a wide range of environments. Our findings demonstrated that using big data can enhance the prediction ability by up to 97% for grain yield and 44% for plant height, outperforming individual training sets. This improvement is primarily attributed to the expansion of the training set size relative to the genetic diversity. In conclusion, big data holds significant potential to accelerate genetic gain in winter wheat predictive breeding, making it a compelling option.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 9","pages":"224"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373547/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing big data for enhanced genome-wide prediction in winter wheat breeding.\",\"authors\":\"Ravindra Reddy Gundala, Ulrike Avenhaus, Jost Doernte, Wera Maria Eckhoff, Jutta Foerster, Mario Gils, Michael Koch, Martin Kirchhoff, Sonja Kollers, Nina Pfeiffer, Matthias Rapp, Monika Spiller, Valentin Wimmer, Markus Wolf, Yusheng Zhao, Jochen Christoph Reif\",\"doi\":\"10.1007/s00122-025-05007-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>By combining data from different public and private breeding programs for genomic selection, we have increased the size and diversity of the training population, which has led to better predictions of grain yield and plant height in winter wheat compared to using individual training sets. The accuracy of genome-wide prediction is anticipated to improve with an increase in training population size. In our study, we assembled a comprehensive wheat data set consisting of about 18,000 inbred lines and phenotypic data from about 250,000 plots. We evaluated the potential to train genome-wide prediction models using this big data set through data from post-registration trials conducted across a wide range of environments. Our findings demonstrated that using big data can enhance the prediction ability by up to 97% for grain yield and 44% for plant height, outperforming individual training sets. This improvement is primarily attributed to the expansion of the training set size relative to the genetic diversity. In conclusion, big data holds significant potential to accelerate genetic gain in winter wheat predictive breeding, making it a compelling option.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"138 9\",\"pages\":\"224\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373547/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-025-05007-6\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-05007-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:通过结合来自不同公共和私人育种项目的基因组选择数据,我们增加了训练群体的规模和多样性,与使用单个训练集相比,这可以更好地预测冬小麦的产量和株高。全基因组预测的准确性有望随着训练种群规模的增加而提高。在我们的研究中,我们收集了一个综合的小麦数据集,包括大约18000个自交系和大约25万个地块的表型数据。我们通过在各种环境中进行的注册后试验的数据,评估了使用该大数据集训练全基因组预测模型的潜力。我们的研究结果表明,使用大数据可以将粮食产量的预测能力提高97%,植物高度的预测能力提高44%,优于单个训练集。这种改进主要归因于相对于遗传多样性的训练集大小的扩展。总之,大数据在冬小麦预测育种中具有加速遗传增益的巨大潜力,使其成为一个令人信服的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing big data for enhanced genome-wide prediction in winter wheat breeding.

Key message: By combining data from different public and private breeding programs for genomic selection, we have increased the size and diversity of the training population, which has led to better predictions of grain yield and plant height in winter wheat compared to using individual training sets. The accuracy of genome-wide prediction is anticipated to improve with an increase in training population size. In our study, we assembled a comprehensive wheat data set consisting of about 18,000 inbred lines and phenotypic data from about 250,000 plots. We evaluated the potential to train genome-wide prediction models using this big data set through data from post-registration trials conducted across a wide range of environments. Our findings demonstrated that using big data can enhance the prediction ability by up to 97% for grain yield and 44% for plant height, outperforming individual training sets. This improvement is primarily attributed to the expansion of the training set size relative to the genetic diversity. In conclusion, big data holds significant potential to accelerate genetic gain in winter wheat predictive breeding, making it a compelling option.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信