具有两个时间尺度的竞争风险模型。

IF 1.9 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Angela Carollo, Hein Putter, Paul Hc Eilers, Jutta Gampe
{"title":"具有两个时间尺度的竞争风险模型。","authors":"Angela Carollo, Hein Putter, Paul Hc Eilers, Jutta Gampe","doi":"10.1177/09622802251367443","DOIUrl":null,"url":null,"abstract":"<p><p>Competing risks models can involve more than one time scale. A relevant example is the study of mortality after a cancer diagnosis, where time since diagnosis but also age may jointly determine the hazards of death due to different causes. Multiple time scales have rarely been explored in the context of competing events. Here, we propose a model in which the cause-specific hazards vary smoothly over two times scales. It is estimated by two-dimensional <math><mi>P</mi></math>-splines, exploiting the equivalence between hazard smoothing and Poisson regression. The data are arranged on a grid so that we can make use of generalised linear array models for efficient computations. The R-package TwoTimeScales implements the model. As a motivating example we analyse mortality after diagnosis of breast cancer and we distinguish between death due to breast cancer and all other causes of death. The time scales are age and time since diagnosis. We use data from the Surveillance, Epidemiology and End Results (SEER) program. In the SEER data, age at diagnosis is provided with a last open-ended category, leading to coarsely grouped data. We use the two-dimensional penalised composite link model to ungroup the data before applying the competing risks model with two time scales.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251367443"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competing risks models with two time scales.\",\"authors\":\"Angela Carollo, Hein Putter, Paul Hc Eilers, Jutta Gampe\",\"doi\":\"10.1177/09622802251367443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Competing risks models can involve more than one time scale. A relevant example is the study of mortality after a cancer diagnosis, where time since diagnosis but also age may jointly determine the hazards of death due to different causes. Multiple time scales have rarely been explored in the context of competing events. Here, we propose a model in which the cause-specific hazards vary smoothly over two times scales. It is estimated by two-dimensional <math><mi>P</mi></math>-splines, exploiting the equivalence between hazard smoothing and Poisson regression. The data are arranged on a grid so that we can make use of generalised linear array models for efficient computations. The R-package TwoTimeScales implements the model. As a motivating example we analyse mortality after diagnosis of breast cancer and we distinguish between death due to breast cancer and all other causes of death. The time scales are age and time since diagnosis. We use data from the Surveillance, Epidemiology and End Results (SEER) program. In the SEER data, age at diagnosis is provided with a last open-ended category, leading to coarsely grouped data. We use the two-dimensional penalised composite link model to ungroup the data before applying the competing risks model with two time scales.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802251367443\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802251367443\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251367443","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

相互竞争的风险模型可能涉及多个时间尺度。一个相关的例子是对癌症诊断后死亡率的研究,其中诊断后的时间和年龄可能共同决定因不同原因导致的死亡危险。在竞争事件的背景下,很少探索多个时间尺度。在这里,我们提出了一个模型,其中特定原因的危害在两个时间尺度上平稳变化。利用危险平滑和泊松回归之间的等价性,利用二维p样条估计。数据排列在网格上,以便我们可以利用广义线性阵列模型进行有效的计算。r包TwoTimeScales实现了该模型。作为一个鼓舞人心的例子,我们分析了乳腺癌诊断后的死亡率,并区分了乳腺癌导致的死亡和所有其他死亡原因。时间尺度为年龄和诊断后的时间。我们使用来自监测、流行病学和最终结果(SEER)项目的数据。在SEER数据中,诊断年龄提供了最后一个开放式类别,导致数据粗略分组。在应用具有两个时间尺度的竞争风险模型之前,我们先使用二维惩罚复合链接模型对数据进行解组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Competing risks models with two time scales.

Competing risks models can involve more than one time scale. A relevant example is the study of mortality after a cancer diagnosis, where time since diagnosis but also age may jointly determine the hazards of death due to different causes. Multiple time scales have rarely been explored in the context of competing events. Here, we propose a model in which the cause-specific hazards vary smoothly over two times scales. It is estimated by two-dimensional P-splines, exploiting the equivalence between hazard smoothing and Poisson regression. The data are arranged on a grid so that we can make use of generalised linear array models for efficient computations. The R-package TwoTimeScales implements the model. As a motivating example we analyse mortality after diagnosis of breast cancer and we distinguish between death due to breast cancer and all other causes of death. The time scales are age and time since diagnosis. We use data from the Surveillance, Epidemiology and End Results (SEER) program. In the SEER data, age at diagnosis is provided with a last open-ended category, leading to coarsely grouped data. We use the two-dimensional penalised composite link model to ungroup the data before applying the competing risks model with two time scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信