Youngbin Seo, Hae-Young Kim, KiBong Choi, Sunmi Song, Junesun Kim
{"title":"慢性疾病在预测老年人抑郁和自杀意念中的作用。","authors":"Youngbin Seo, Hae-Young Kim, KiBong Choi, Sunmi Song, Junesun Kim","doi":"10.30773/pi.2024.0106","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to clarify how chronic diseases (CDs) contribute to depression and suicidal ideation (SI) prediction using machine learning (ML) techniques among the older adult population.</p><p><strong>Methods: </strong>National representative data of 5,419 older adults from the Korea National Health and Nutrition Examination Survey conducted in 2013, 2015, 2017, and 2019 were used in this study. The number and type of CDs were incorporated into Models 1 and 2, respectively, using five ML methods.</p><p><strong>Results: </strong>The average age of the participants was 72.7 years, with 43.2% males, 15.2% reporting depression, and 7.3% reporting SI. The number of CDs was correlated with increased depression and SI. The ML models showed moderate-to-good performance in the prediction of depression and SI. The area under the curve (AUC) values for Model 1 ranged from 0.729 to 0.772 for depression, and from 0.754 to 0.793 for SI. In Model 2, the AUC ranged from 0.704 to 0.768 for depression and from 0.750 to 0.785 for SI. More depression and SI were expected when the number of CDs was one or more and two or more, respectively. The top predictors of depression were osteoarthritis, myocardial infarction, diabetes, asthma, and stroke, whereas those predicting SI were stroke, hypertension, asthma, myocardial infarction, and rheumatoid arthritis.</p><p><strong>Conclusion: </strong>The number and specific types of CDs predicted depression and SI among Korean older adults. These results may help enhance cooperation with clinicians treating CDs and promote the early detection and prevention of further SI and behaviors.</p>","PeriodicalId":21164,"journal":{"name":"Psychiatry Investigation","volume":" ","pages":"1068-1076"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contribution of Chronic Disease in Predicting Depression and Suicidal Ideation Among the Older Adult Population.\",\"authors\":\"Youngbin Seo, Hae-Young Kim, KiBong Choi, Sunmi Song, Junesun Kim\",\"doi\":\"10.30773/pi.2024.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to clarify how chronic diseases (CDs) contribute to depression and suicidal ideation (SI) prediction using machine learning (ML) techniques among the older adult population.</p><p><strong>Methods: </strong>National representative data of 5,419 older adults from the Korea National Health and Nutrition Examination Survey conducted in 2013, 2015, 2017, and 2019 were used in this study. The number and type of CDs were incorporated into Models 1 and 2, respectively, using five ML methods.</p><p><strong>Results: </strong>The average age of the participants was 72.7 years, with 43.2% males, 15.2% reporting depression, and 7.3% reporting SI. The number of CDs was correlated with increased depression and SI. The ML models showed moderate-to-good performance in the prediction of depression and SI. The area under the curve (AUC) values for Model 1 ranged from 0.729 to 0.772 for depression, and from 0.754 to 0.793 for SI. In Model 2, the AUC ranged from 0.704 to 0.768 for depression and from 0.750 to 0.785 for SI. More depression and SI were expected when the number of CDs was one or more and two or more, respectively. The top predictors of depression were osteoarthritis, myocardial infarction, diabetes, asthma, and stroke, whereas those predicting SI were stroke, hypertension, asthma, myocardial infarction, and rheumatoid arthritis.</p><p><strong>Conclusion: </strong>The number and specific types of CDs predicted depression and SI among Korean older adults. These results may help enhance cooperation with clinicians treating CDs and promote the early detection and prevention of further SI and behaviors.</p>\",\"PeriodicalId\":21164,\"journal\":{\"name\":\"Psychiatry Investigation\",\"volume\":\" \",\"pages\":\"1068-1076\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychiatry Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.30773/pi.2024.0106\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30773/pi.2024.0106","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Contribution of Chronic Disease in Predicting Depression and Suicidal Ideation Among the Older Adult Population.
Objective: This study aimed to clarify how chronic diseases (CDs) contribute to depression and suicidal ideation (SI) prediction using machine learning (ML) techniques among the older adult population.
Methods: National representative data of 5,419 older adults from the Korea National Health and Nutrition Examination Survey conducted in 2013, 2015, 2017, and 2019 were used in this study. The number and type of CDs were incorporated into Models 1 and 2, respectively, using five ML methods.
Results: The average age of the participants was 72.7 years, with 43.2% males, 15.2% reporting depression, and 7.3% reporting SI. The number of CDs was correlated with increased depression and SI. The ML models showed moderate-to-good performance in the prediction of depression and SI. The area under the curve (AUC) values for Model 1 ranged from 0.729 to 0.772 for depression, and from 0.754 to 0.793 for SI. In Model 2, the AUC ranged from 0.704 to 0.768 for depression and from 0.750 to 0.785 for SI. More depression and SI were expected when the number of CDs was one or more and two or more, respectively. The top predictors of depression were osteoarthritis, myocardial infarction, diabetes, asthma, and stroke, whereas those predicting SI were stroke, hypertension, asthma, myocardial infarction, and rheumatoid arthritis.
Conclusion: The number and specific types of CDs predicted depression and SI among Korean older adults. These results may help enhance cooperation with clinicians treating CDs and promote the early detection and prevention of further SI and behaviors.
期刊介绍:
The Psychiatry Investigation is published on the 25th day of every month in English by the Korean Neuropsychiatric Association (KNPA). The Journal covers the whole range of psychiatry and neuroscience. Both basic and clinical contributions are encouraged from all disciplines and research areas relevant to the pathophysiology and management of neuropsychiatric disorders and symptoms, as well as researches related to cross cultural psychiatry and ethnic issues in psychiatry. The Journal publishes editorials, review articles, original articles, brief reports, viewpoints and correspondences. All research articles are peer reviewed. Contributions are accepted for publication on the condition that their substance has not been published or submitted for publication elsewhere. Authors submitting papers to the Journal (serially or otherwise) with a common theme or using data derived from the same sample (or a subset thereof) must send details of all relevant previous publications and simultaneous submissions. The Journal is not responsible for statements made by contributors. Material in the Journal does not necessarily reflect the views of the Editor or of the KNPA. Manuscripts accepted for publication are copy-edited to improve readability and to ensure conformity with house style.