蛋白激酶G1α的氧化还原依赖性激活有助于瞬时受体电位阳离子通道亚家族V成员1介导的急性伤害性疼痛行为。

IF 7.4 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Redox Report Pub Date : 2025-12-01 Epub Date: 2025-08-25 DOI:10.1080/13510002.2025.2549954
Tim Berg, Katharina Metzner, Nabil Bahrami, Elena Wang, Maximilian Koch, Philip Eaton, Achim Schmidtko, Wiebke Kallenborn-Gerhardt
{"title":"蛋白激酶G1α的氧化还原依赖性激活有助于瞬时受体电位阳离子通道亚家族V成员1介导的急性伤害性疼痛行为。","authors":"Tim Berg, Katharina Metzner, Nabil Bahrami, Elena Wang, Maximilian Koch, Philip Eaton, Achim Schmidtko, Wiebke Kallenborn-Gerhardt","doi":"10.1080/13510002.2025.2549954","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sensory neurons relay the pain signals to the brain via the nociceptive system. Notably, reactive oxygen species (ROS) serve as signaling molecules in the somatosensory system; however, their contribution to sensing noxious stimuli remains poorly understood.</p><p><strong>Methods: </strong>Herein, the role of protein kinase G (PKG)1α, which is highly expressed in sensory neurons and serves as a ROS target, was investigated in sensory neurons in the processing of acute nociceptive pain. Cys42Ser PKG1α-knock-in (PKG1α-KI) mice, devoid of redox-dependent PKG1α activation, were subjected to behavioral testing, ROS detection assays, gene expression experiments, and imaging analyses.</p><p><strong>Results: </strong>Interestingly, PKG1α-KI mice showed reduced behavioral responses to noxious heat and the transient receptor potential cation channel subfamily V member 1 (TRPV1) agonist capsaicin. Moreover, capsaicin-induced sensory neuron stimulation upregulated ROS production and redox-dependent PKG1α activation. Calcium imaging results and patch-clamp recordings revealed that capsaicin-induced calcium flux and neuronal excitability was reduced in sensory neurons of PKG1α-KI mice.</p><p><strong>Conclusion: </strong>Altogether, the findings of this study show the effects of redox-dependent PKG1α activation on capsaicin/TRPV1-mediated signaling in sensory neurons during acute nociceptive pain.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"1-17"},"PeriodicalIF":7.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Redox-dependent activation of protein kinase G1α contributes to transient receptor potential cation channel subfamily V member 1-mediated acute nociceptive pain behavior.\",\"authors\":\"Tim Berg, Katharina Metzner, Nabil Bahrami, Elena Wang, Maximilian Koch, Philip Eaton, Achim Schmidtko, Wiebke Kallenborn-Gerhardt\",\"doi\":\"10.1080/13510002.2025.2549954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sensory neurons relay the pain signals to the brain via the nociceptive system. Notably, reactive oxygen species (ROS) serve as signaling molecules in the somatosensory system; however, their contribution to sensing noxious stimuli remains poorly understood.</p><p><strong>Methods: </strong>Herein, the role of protein kinase G (PKG)1α, which is highly expressed in sensory neurons and serves as a ROS target, was investigated in sensory neurons in the processing of acute nociceptive pain. Cys42Ser PKG1α-knock-in (PKG1α-KI) mice, devoid of redox-dependent PKG1α activation, were subjected to behavioral testing, ROS detection assays, gene expression experiments, and imaging analyses.</p><p><strong>Results: </strong>Interestingly, PKG1α-KI mice showed reduced behavioral responses to noxious heat and the transient receptor potential cation channel subfamily V member 1 (TRPV1) agonist capsaicin. Moreover, capsaicin-induced sensory neuron stimulation upregulated ROS production and redox-dependent PKG1α activation. Calcium imaging results and patch-clamp recordings revealed that capsaicin-induced calcium flux and neuronal excitability was reduced in sensory neurons of PKG1α-KI mice.</p><p><strong>Conclusion: </strong>Altogether, the findings of this study show the effects of redox-dependent PKG1α activation on capsaicin/TRPV1-mediated signaling in sensory neurons during acute nociceptive pain.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"30 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2025.2549954\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2025.2549954","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:感觉神经元通过伤害感知系统将疼痛信号传递给大脑。值得注意的是,活性氧(ROS)在体感觉系统中充当信号分子;然而,它们对感知有害刺激的作用仍然知之甚少。方法:研究了在感觉神经元中高表达的蛋白激酶G (PKG)1α作为ROS靶点在感觉神经元中对急性伤害性疼痛的加工过程中的作用。对缺乏氧化还原依赖性PKG1α激活的Cys42Ser PKG1α-敲入(PKG1α- ki)小鼠进行行为测试、ROS检测、基因表达实验和影像学分析。结果:有趣的是,PKG1α-KI小鼠对有害热量和瞬时受体电位阳离子通道亚家族V成员1 (TRPV1)激动剂辣椒素的行为反应降低。此外,辣椒素诱导的感觉神经元刺激上调了ROS的产生和氧化还原依赖性PKG1α的激活。钙显像结果和膜片钳记录显示,辣椒素诱导的PKG1α-KI小鼠感觉神经元钙通量和神经元兴奋性降低。结论:本研究结果表明,氧化还原依赖性PKG1α激活对急性痛觉性疼痛中辣椒素/ trpv1介导的感觉神经元信号通路的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redox-dependent activation of protein kinase G1α contributes to transient receptor potential cation channel subfamily V member 1-mediated acute nociceptive pain behavior.

Background: Sensory neurons relay the pain signals to the brain via the nociceptive system. Notably, reactive oxygen species (ROS) serve as signaling molecules in the somatosensory system; however, their contribution to sensing noxious stimuli remains poorly understood.

Methods: Herein, the role of protein kinase G (PKG)1α, which is highly expressed in sensory neurons and serves as a ROS target, was investigated in sensory neurons in the processing of acute nociceptive pain. Cys42Ser PKG1α-knock-in (PKG1α-KI) mice, devoid of redox-dependent PKG1α activation, were subjected to behavioral testing, ROS detection assays, gene expression experiments, and imaging analyses.

Results: Interestingly, PKG1α-KI mice showed reduced behavioral responses to noxious heat and the transient receptor potential cation channel subfamily V member 1 (TRPV1) agonist capsaicin. Moreover, capsaicin-induced sensory neuron stimulation upregulated ROS production and redox-dependent PKG1α activation. Calcium imaging results and patch-clamp recordings revealed that capsaicin-induced calcium flux and neuronal excitability was reduced in sensory neurons of PKG1α-KI mice.

Conclusion: Altogether, the findings of this study show the effects of redox-dependent PKG1α activation on capsaicin/TRPV1-mediated signaling in sensory neurons during acute nociceptive pain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Report
Redox Report 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included. While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信