{"title":"拓扑和可重构太赫兹元器件。","authors":"Zihan Zhao, Hongwei Wang, Guangwei Hu, Andrea Alù","doi":"10.34133/research.0882","DOIUrl":null,"url":null,"abstract":"<p><p>The terahertz (THz) frequency range, situated between microwave and infrared radiation, has emerged as a pivotal domain with broad applications in high-speed communication, imaging, sensing, and biosensing. The development of topological THz metadevices represents a notable advancement for photonic technologies, leveraging the distinctive electronic properties and quantum-inspired phenomena inherent to topological materials. These devices enable robust waveguiding capabilities, positioning them as critical components for on-chip data transfer and photonic integrated circuits, particularly within emerging 6G communication frameworks. A principal advantage resides in the capacity to maintain low-loss wave propagation while effectively suppressing backscattering phenomena, a critical requirement for functional components operating at higher frequencies. In parallel, by leveraging advanced materials such as liquid crystals, plasma, and phase-change materials, these devices facilitate real-time control over essential wave parameters, including amplitude, frequency, and phase, which augments the functionality of both communication and sensing systems, opening new avenues for THz-based technologies. This review outlines fundamental principles of topological components and reconfigurable metadevices operating at THz frequencies. We further explore emerging strategies that integrate topological properties and reconfigurability, with a specific focus on their implementation in chip-scale photonic circuits and free-space wavefront control.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0882"},"PeriodicalIF":10.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385967/pdf/","citationCount":"0","resultStr":"{\"title\":\"Topological and Reconfigurable Terahertz Metadevices.\",\"authors\":\"Zihan Zhao, Hongwei Wang, Guangwei Hu, Andrea Alù\",\"doi\":\"10.34133/research.0882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The terahertz (THz) frequency range, situated between microwave and infrared radiation, has emerged as a pivotal domain with broad applications in high-speed communication, imaging, sensing, and biosensing. The development of topological THz metadevices represents a notable advancement for photonic technologies, leveraging the distinctive electronic properties and quantum-inspired phenomena inherent to topological materials. These devices enable robust waveguiding capabilities, positioning them as critical components for on-chip data transfer and photonic integrated circuits, particularly within emerging 6G communication frameworks. A principal advantage resides in the capacity to maintain low-loss wave propagation while effectively suppressing backscattering phenomena, a critical requirement for functional components operating at higher frequencies. In parallel, by leveraging advanced materials such as liquid crystals, plasma, and phase-change materials, these devices facilitate real-time control over essential wave parameters, including amplitude, frequency, and phase, which augments the functionality of both communication and sensing systems, opening new avenues for THz-based technologies. This review outlines fundamental principles of topological components and reconfigurable metadevices operating at THz frequencies. We further explore emerging strategies that integrate topological properties and reconfigurability, with a specific focus on their implementation in chip-scale photonic circuits and free-space wavefront control.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0882\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0882\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0882","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Topological and Reconfigurable Terahertz Metadevices.
The terahertz (THz) frequency range, situated between microwave and infrared radiation, has emerged as a pivotal domain with broad applications in high-speed communication, imaging, sensing, and biosensing. The development of topological THz metadevices represents a notable advancement for photonic technologies, leveraging the distinctive electronic properties and quantum-inspired phenomena inherent to topological materials. These devices enable robust waveguiding capabilities, positioning them as critical components for on-chip data transfer and photonic integrated circuits, particularly within emerging 6G communication frameworks. A principal advantage resides in the capacity to maintain low-loss wave propagation while effectively suppressing backscattering phenomena, a critical requirement for functional components operating at higher frequencies. In parallel, by leveraging advanced materials such as liquid crystals, plasma, and phase-change materials, these devices facilitate real-time control over essential wave parameters, including amplitude, frequency, and phase, which augments the functionality of both communication and sensing systems, opening new avenues for THz-based technologies. This review outlines fundamental principles of topological components and reconfigurable metadevices operating at THz frequencies. We further explore emerging strategies that integrate topological properties and reconfigurability, with a specific focus on their implementation in chip-scale photonic circuits and free-space wavefront control.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.