Han Jiang, Bin Ren, Yamin Zhang, Yuqiang Zhou, Jianming Wu, Xueli Yu, Hua Yu, Peiyan Ni, Yan Xu, Wei Deng, Wanjun Guo, Xun Hu, Xueyu Qi, Tao Li
{"title":"双相情感障碍患者血浆神经源性细胞外囊泡microrna的改变。","authors":"Han Jiang, Bin Ren, Yamin Zhang, Yuqiang Zhou, Jianming Wu, Xueli Yu, Hua Yu, Peiyan Ni, Yan Xu, Wei Deng, Wanjun Guo, Xun Hu, Xueyu Qi, Tao Li","doi":"10.1017/S0033291725000741","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRNAs) alterations in patients with bipolar disorder (BD) are pivotal to the disease's pathogenesis. Since obtaining brain tissue is challenging, most research has shifted to analyzing miRNAs in peripheral blood. One innovative solution is sequencing miRNAs in plasma extracellular vesicles (EVs), particularly those neural-derived EVs emanating from the brain.</p><p><strong>Methods: </strong>We isolated plasma neural-derived EVs from 85 patients with BD and 39 healthy controls (HC) using biotinylated antibodies targeting a neural tissue marker, followed by miRNA sequencing and expression analysis. Furthermore, we conducted bioinformatic analyses and functional experiments to delve deeper into the underlying pathological mechanisms of BD.</p><p><strong>Results: </strong>Out of the 2,656 neural-derived miRNAs in EVs identified, 14 were differentially expressed between BD patients and HC. Moreover, the target genes of miR-143-3p displayed distinct expression patterns in the prefrontal cortex of BD patients versus HC, as sourced from the PsychENCODE database. The functional experiments demonstrated that the abnormal expression of miR-143-3p promoted the proliferation and activation of microglia and upregulated the expression of proinflammatory factors, including IL-1β, IL-6, and NLRP3. Through weighted gene co-expression network analysis, a module linking to the clinical symptoms of BD patients was discerned. Enrichment analyses unveiled these miRNAs' role in modulating the axon guidance, the Ras signaling pathway, and ErbB signaling pathway.</p><p><strong>Conclusions: </strong>Our findings provide the first evidence of dysregulated plasma miRNAs within neural-derived EVs in BD patients and suggest that neural-derived EVs might be involved in the pathophysiology of BD through related biological pathways, such as neurogenesis and neuroinflammation.</p>","PeriodicalId":20891,"journal":{"name":"Psychological Medicine","volume":"55 ","pages":"e256"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alterations of plasma neural-derived extracellular vesicles microRNAs in patients with bipolar disorder.\",\"authors\":\"Han Jiang, Bin Ren, Yamin Zhang, Yuqiang Zhou, Jianming Wu, Xueli Yu, Hua Yu, Peiyan Ni, Yan Xu, Wei Deng, Wanjun Guo, Xun Hu, Xueyu Qi, Tao Li\",\"doi\":\"10.1017/S0033291725000741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>MicroRNAs (miRNAs) alterations in patients with bipolar disorder (BD) are pivotal to the disease's pathogenesis. Since obtaining brain tissue is challenging, most research has shifted to analyzing miRNAs in peripheral blood. One innovative solution is sequencing miRNAs in plasma extracellular vesicles (EVs), particularly those neural-derived EVs emanating from the brain.</p><p><strong>Methods: </strong>We isolated plasma neural-derived EVs from 85 patients with BD and 39 healthy controls (HC) using biotinylated antibodies targeting a neural tissue marker, followed by miRNA sequencing and expression analysis. Furthermore, we conducted bioinformatic analyses and functional experiments to delve deeper into the underlying pathological mechanisms of BD.</p><p><strong>Results: </strong>Out of the 2,656 neural-derived miRNAs in EVs identified, 14 were differentially expressed between BD patients and HC. Moreover, the target genes of miR-143-3p displayed distinct expression patterns in the prefrontal cortex of BD patients versus HC, as sourced from the PsychENCODE database. The functional experiments demonstrated that the abnormal expression of miR-143-3p promoted the proliferation and activation of microglia and upregulated the expression of proinflammatory factors, including IL-1β, IL-6, and NLRP3. Through weighted gene co-expression network analysis, a module linking to the clinical symptoms of BD patients was discerned. Enrichment analyses unveiled these miRNAs' role in modulating the axon guidance, the Ras signaling pathway, and ErbB signaling pathway.</p><p><strong>Conclusions: </strong>Our findings provide the first evidence of dysregulated plasma miRNAs within neural-derived EVs in BD patients and suggest that neural-derived EVs might be involved in the pathophysiology of BD through related biological pathways, such as neurogenesis and neuroinflammation.</p>\",\"PeriodicalId\":20891,\"journal\":{\"name\":\"Psychological Medicine\",\"volume\":\"55 \",\"pages\":\"e256\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0033291725000741\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0033291725000741","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Alterations of plasma neural-derived extracellular vesicles microRNAs in patients with bipolar disorder.
Background: MicroRNAs (miRNAs) alterations in patients with bipolar disorder (BD) are pivotal to the disease's pathogenesis. Since obtaining brain tissue is challenging, most research has shifted to analyzing miRNAs in peripheral blood. One innovative solution is sequencing miRNAs in plasma extracellular vesicles (EVs), particularly those neural-derived EVs emanating from the brain.
Methods: We isolated plasma neural-derived EVs from 85 patients with BD and 39 healthy controls (HC) using biotinylated antibodies targeting a neural tissue marker, followed by miRNA sequencing and expression analysis. Furthermore, we conducted bioinformatic analyses and functional experiments to delve deeper into the underlying pathological mechanisms of BD.
Results: Out of the 2,656 neural-derived miRNAs in EVs identified, 14 were differentially expressed between BD patients and HC. Moreover, the target genes of miR-143-3p displayed distinct expression patterns in the prefrontal cortex of BD patients versus HC, as sourced from the PsychENCODE database. The functional experiments demonstrated that the abnormal expression of miR-143-3p promoted the proliferation and activation of microglia and upregulated the expression of proinflammatory factors, including IL-1β, IL-6, and NLRP3. Through weighted gene co-expression network analysis, a module linking to the clinical symptoms of BD patients was discerned. Enrichment analyses unveiled these miRNAs' role in modulating the axon guidance, the Ras signaling pathway, and ErbB signaling pathway.
Conclusions: Our findings provide the first evidence of dysregulated plasma miRNAs within neural-derived EVs in BD patients and suggest that neural-derived EVs might be involved in the pathophysiology of BD through related biological pathways, such as neurogenesis and neuroinflammation.
期刊介绍:
Now in its fifth decade of publication, Psychological Medicine is a leading international journal in the fields of psychiatry, related aspects of psychology and basic sciences. From 2014, there are 16 issues a year, each featuring original articles reporting key research being undertaken worldwide, together with shorter editorials by distinguished scholars and an important book review section. The journal''s success is clearly demonstrated by a consistently high impact factor.