Ana Isabel Hernáiz Ferrer, Chandra Bortolotto, Luisa Carone, Emma Maria Preda, Cristina Fichera, Alice Lionetti, Giulia Gambini, Eleonora Fresi, Federico Alberto Grassi, Lorenzo Preda
{"title":"人工智能在舟状骨骨折诊断中的应用:在现实生活中舟状骨骨折自动检测的影响。","authors":"Ana Isabel Hernáiz Ferrer, Chandra Bortolotto, Luisa Carone, Emma Maria Preda, Cristina Fichera, Alice Lionetti, Giulia Gambini, Eleonora Fresi, Federico Alberto Grassi, Lorenzo Preda","doi":"10.1007/s11547-025-02028-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We evaluated the diagnostic performance of two AI software programs (BoneView and RBfracture) in assisting non-specialist radiologists (NSRs) in detecting scaphoid fractures using conventional wrist radiographs (X-rays).</p><p><strong>Methods: </strong>We retrospectively analyzed 724 radiographs from 264 patients with wrist trauma. Patients were classified into two groups: Group 1 included cases with a definitive diagnosis by a specialist radiologist (SR) based on X-rays (either scaphoid fracture or not), while Group 2 comprised indeterminate cases for the SRs requiring a CT scan for a final diagnosis. Indeterminate cases were defined as negative or doubtful X-rays in patients with persistent clinical symptoms. The X-rays were evaluated by AI and two NSRs, independently and in combination. We compared their diagnostic performances using sensitivity, specificity, area under the curve (AUC), and Cohen's kappa for diagnostic agreement.</p><p><strong>Results: </strong>Group 1 included 174 patients, with 80 cases (45.97%) of scaphoid fractures. Group 2 had 90 patients, of which 44 with uncertain diagnoses and 46 negative cases with persistent symptoms. Scaphoid fractures were identified in 51 patients (56.67%) in Group 2 after further CT imaging. In Group 1, AI performed similarly to NSRs (AUC: BoneView 0.83, RBfracture 0.84, NSR1 0.88, NSR2 0.90), without significant contribution of AI to the performance of NSRs. In Group 2, performances were lower (AUC: BoneView 0.62, RBfracture 0.65, NSR1 0.46, NSR2 0.63), but AI assistance significantly improved NSR performance (NSR2 + BoneView AUC = 0.75, p = 0.003; NSR2 + RBfracture AUC = 0.72, p = 0.030). Diagnostic agreement between NSR1 with AI support and SR was moderate (kappa = 0.576), and substantial for NSR2 (kappa = 0.712).</p><p><strong>Conclusions: </strong>AI tools may effectively assist NSRs, especially in complex scaphoid fracture cases.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of artificial intelligence in the diagnosis of scaphoid fractures: impact of automated detection of scaphoid fractures in a real-life study.\",\"authors\":\"Ana Isabel Hernáiz Ferrer, Chandra Bortolotto, Luisa Carone, Emma Maria Preda, Cristina Fichera, Alice Lionetti, Giulia Gambini, Eleonora Fresi, Federico Alberto Grassi, Lorenzo Preda\",\"doi\":\"10.1007/s11547-025-02028-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We evaluated the diagnostic performance of two AI software programs (BoneView and RBfracture) in assisting non-specialist radiologists (NSRs) in detecting scaphoid fractures using conventional wrist radiographs (X-rays).</p><p><strong>Methods: </strong>We retrospectively analyzed 724 radiographs from 264 patients with wrist trauma. Patients were classified into two groups: Group 1 included cases with a definitive diagnosis by a specialist radiologist (SR) based on X-rays (either scaphoid fracture or not), while Group 2 comprised indeterminate cases for the SRs requiring a CT scan for a final diagnosis. Indeterminate cases were defined as negative or doubtful X-rays in patients with persistent clinical symptoms. The X-rays were evaluated by AI and two NSRs, independently and in combination. We compared their diagnostic performances using sensitivity, specificity, area under the curve (AUC), and Cohen's kappa for diagnostic agreement.</p><p><strong>Results: </strong>Group 1 included 174 patients, with 80 cases (45.97%) of scaphoid fractures. Group 2 had 90 patients, of which 44 with uncertain diagnoses and 46 negative cases with persistent symptoms. Scaphoid fractures were identified in 51 patients (56.67%) in Group 2 after further CT imaging. In Group 1, AI performed similarly to NSRs (AUC: BoneView 0.83, RBfracture 0.84, NSR1 0.88, NSR2 0.90), without significant contribution of AI to the performance of NSRs. In Group 2, performances were lower (AUC: BoneView 0.62, RBfracture 0.65, NSR1 0.46, NSR2 0.63), but AI assistance significantly improved NSR performance (NSR2 + BoneView AUC = 0.75, p = 0.003; NSR2 + RBfracture AUC = 0.72, p = 0.030). Diagnostic agreement between NSR1 with AI support and SR was moderate (kappa = 0.576), and substantial for NSR2 (kappa = 0.712).</p><p><strong>Conclusions: </strong>AI tools may effectively assist NSRs, especially in complex scaphoid fracture cases.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-025-02028-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-02028-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Application of artificial intelligence in the diagnosis of scaphoid fractures: impact of automated detection of scaphoid fractures in a real-life study.
Purpose: We evaluated the diagnostic performance of two AI software programs (BoneView and RBfracture) in assisting non-specialist radiologists (NSRs) in detecting scaphoid fractures using conventional wrist radiographs (X-rays).
Methods: We retrospectively analyzed 724 radiographs from 264 patients with wrist trauma. Patients were classified into two groups: Group 1 included cases with a definitive diagnosis by a specialist radiologist (SR) based on X-rays (either scaphoid fracture or not), while Group 2 comprised indeterminate cases for the SRs requiring a CT scan for a final diagnosis. Indeterminate cases were defined as negative or doubtful X-rays in patients with persistent clinical symptoms. The X-rays were evaluated by AI and two NSRs, independently and in combination. We compared their diagnostic performances using sensitivity, specificity, area under the curve (AUC), and Cohen's kappa for diagnostic agreement.
Results: Group 1 included 174 patients, with 80 cases (45.97%) of scaphoid fractures. Group 2 had 90 patients, of which 44 with uncertain diagnoses and 46 negative cases with persistent symptoms. Scaphoid fractures were identified in 51 patients (56.67%) in Group 2 after further CT imaging. In Group 1, AI performed similarly to NSRs (AUC: BoneView 0.83, RBfracture 0.84, NSR1 0.88, NSR2 0.90), without significant contribution of AI to the performance of NSRs. In Group 2, performances were lower (AUC: BoneView 0.62, RBfracture 0.65, NSR1 0.46, NSR2 0.63), but AI assistance significantly improved NSR performance (NSR2 + BoneView AUC = 0.75, p = 0.003; NSR2 + RBfracture AUC = 0.72, p = 0.030). Diagnostic agreement between NSR1 with AI support and SR was moderate (kappa = 0.576), and substantial for NSR2 (kappa = 0.712).
Conclusions: AI tools may effectively assist NSRs, especially in complex scaphoid fracture cases.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.