Justin N Ong, Brian J Grindel, Scott A Rankin, Sarah H Naylon, Anupallavi Srinivasamani, Guillaume J Trusz, Xiaowen Liang, Md Nasir Uddin, Lauren Fuller, Michael Curran, Stephane P Roche, Terry T Takahashi, Richard W Roberts, Steven W Millward
{"title":"利用基于延伸的mRNA展示设计人PD-L1抗体样蛋白生成肽。","authors":"Justin N Ong, Brian J Grindel, Scott A Rankin, Sarah H Naylon, Anupallavi Srinivasamani, Guillaume J Trusz, Xiaowen Liang, Md Nasir Uddin, Lauren Fuller, Michael Curran, Stephane P Roche, Terry T Takahashi, Richard W Roberts, Steven W Millward","doi":"10.1002/pro.70268","DOIUrl":null,"url":null,"abstract":"<p><p>Many peptide drugs rely on nonproteinogenic amino acids and chemical modifications for improved activity and proteolytic stability. However, these features also make drug production expensive and challenging to scale. Here, we engineered small, linear, proteinogenic peptides that bind human programmed death-ligand 1 (hPD-L1) with high affinity and stability using mRNA display affinity maturation. The resulting peptides, SPAM2 and SPAM3, have antibody-like affinities for hPD-L1 (dissociation constants between ~250 and 300 pM) and are selective for hPD-L1. Both SPAM2 and SPAM3 compete with hPD-L1 ligands known to interact with the programmed cell death protein 1 site and are stable in human serum. SPAM3 bound human glioma D423 cells with high affinity in flow cytometry experiments comparable to that of a clinical therapeutic antibody. These results support the use of affinity maturation selections to dramatically enhance the biophysical properties of linear, proteinogenic peptides for translational applications.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 9","pages":"e70268"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376068/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using extension-based mRNA display to design antibody-like proteinogenic peptides for human PD-L1.\",\"authors\":\"Justin N Ong, Brian J Grindel, Scott A Rankin, Sarah H Naylon, Anupallavi Srinivasamani, Guillaume J Trusz, Xiaowen Liang, Md Nasir Uddin, Lauren Fuller, Michael Curran, Stephane P Roche, Terry T Takahashi, Richard W Roberts, Steven W Millward\",\"doi\":\"10.1002/pro.70268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many peptide drugs rely on nonproteinogenic amino acids and chemical modifications for improved activity and proteolytic stability. However, these features also make drug production expensive and challenging to scale. Here, we engineered small, linear, proteinogenic peptides that bind human programmed death-ligand 1 (hPD-L1) with high affinity and stability using mRNA display affinity maturation. The resulting peptides, SPAM2 and SPAM3, have antibody-like affinities for hPD-L1 (dissociation constants between ~250 and 300 pM) and are selective for hPD-L1. Both SPAM2 and SPAM3 compete with hPD-L1 ligands known to interact with the programmed cell death protein 1 site and are stable in human serum. SPAM3 bound human glioma D423 cells with high affinity in flow cytometry experiments comparable to that of a clinical therapeutic antibody. These results support the use of affinity maturation selections to dramatically enhance the biophysical properties of linear, proteinogenic peptides for translational applications.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 9\",\"pages\":\"e70268\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376068/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70268\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70268","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Using extension-based mRNA display to design antibody-like proteinogenic peptides for human PD-L1.
Many peptide drugs rely on nonproteinogenic amino acids and chemical modifications for improved activity and proteolytic stability. However, these features also make drug production expensive and challenging to scale. Here, we engineered small, linear, proteinogenic peptides that bind human programmed death-ligand 1 (hPD-L1) with high affinity and stability using mRNA display affinity maturation. The resulting peptides, SPAM2 and SPAM3, have antibody-like affinities for hPD-L1 (dissociation constants between ~250 and 300 pM) and are selective for hPD-L1. Both SPAM2 and SPAM3 compete with hPD-L1 ligands known to interact with the programmed cell death protein 1 site and are stable in human serum. SPAM3 bound human glioma D423 cells with high affinity in flow cytometry experiments comparable to that of a clinical therapeutic antibody. These results support the use of affinity maturation selections to dramatically enhance the biophysical properties of linear, proteinogenic peptides for translational applications.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).