单细胞转录组的景观特征内分泌系统老化在小鼠。

IF 12.8 1区 生物学 Q1 CELL BIOLOGY
Ran Wei, Zhehao Du, Jue Wang, Jinlong Bi, Wencong Lyu, Haochen Wang, Jianuo He, Fanju Meng, Lijun Zhang, Chao Zhang, Chen Zhang, Wei Tao
{"title":"单细胞转录组的景观特征内分泌系统老化在小鼠。","authors":"Ran Wei, Zhehao Du, Jue Wang, Jinlong Bi, Wencong Lyu, Haochen Wang, Jianuo He, Fanju Meng, Lijun Zhang, Chao Zhang, Chen Zhang, Wei Tao","doi":"10.1093/procel/pwaf074","DOIUrl":null,"url":null,"abstract":"<p><p>The endocrine system is crucial for maintaining overall homeostasis. However, its cellular signatures have not been elucidated during aging. Here, we conducted the first-ever single-cell transcriptomic profiles from eight endocrine organs in young and aged mice, revealing the activation of cell-type-specific aging pathways, such as loss of proteostasis, genomic instability and reactive oxygen species (ROS). Among six sex-shared endocrine organs, aging severely impaired gene expression networks in functional endocrine cells, accompanied by enhanced immune infiltration and unfolded protein response (UPR). Mechanism investigations showed that expanded aging-associated exhausted T cells activated MHC-I-UPR axis across functional endocrine cells by releasing GZMK. The inhibition of GZMK receptors by small chemical molecules counteracted the UPR and senescence, suggesting the immune infiltration is a possible driver of endocrine aging. Machine learning identified CD59 as a novel aging feature in sex-shared functional endocrine cells. For two sex-specific endocrine organs, both aged ovaries and testes showed enhanced immune responses. Meanwhile, cell-type-specific aging-associated transcriptional changes revealed an enhanced ROS mainly in aged theca cells of ovaries, while aged spermatogonia in testes showed impaired DNA repair. This study provides a comprehensive analysis of endocrine system aging at single-cell resolution, offering profound insights into mechanisms of endocrine aging.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single-cell transcriptomic landscape characterizes the endocrine system aging in the mouse.\",\"authors\":\"Ran Wei, Zhehao Du, Jue Wang, Jinlong Bi, Wencong Lyu, Haochen Wang, Jianuo He, Fanju Meng, Lijun Zhang, Chao Zhang, Chen Zhang, Wei Tao\",\"doi\":\"10.1093/procel/pwaf074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endocrine system is crucial for maintaining overall homeostasis. However, its cellular signatures have not been elucidated during aging. Here, we conducted the first-ever single-cell transcriptomic profiles from eight endocrine organs in young and aged mice, revealing the activation of cell-type-specific aging pathways, such as loss of proteostasis, genomic instability and reactive oxygen species (ROS). Among six sex-shared endocrine organs, aging severely impaired gene expression networks in functional endocrine cells, accompanied by enhanced immune infiltration and unfolded protein response (UPR). Mechanism investigations showed that expanded aging-associated exhausted T cells activated MHC-I-UPR axis across functional endocrine cells by releasing GZMK. The inhibition of GZMK receptors by small chemical molecules counteracted the UPR and senescence, suggesting the immune infiltration is a possible driver of endocrine aging. Machine learning identified CD59 as a novel aging feature in sex-shared functional endocrine cells. For two sex-specific endocrine organs, both aged ovaries and testes showed enhanced immune responses. Meanwhile, cell-type-specific aging-associated transcriptional changes revealed an enhanced ROS mainly in aged theca cells of ovaries, while aged spermatogonia in testes showed impaired DNA repair. This study provides a comprehensive analysis of endocrine system aging at single-cell resolution, offering profound insights into mechanisms of endocrine aging.</p>\",\"PeriodicalId\":20790,\"journal\":{\"name\":\"Protein & Cell\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein & Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/procel/pwaf074\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwaf074","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内分泌系统对维持整体体内平衡至关重要。然而,其细胞特征在衰老过程中尚未被阐明。在这里,我们进行了首次来自年轻和老年小鼠8个内分泌器官的单细胞转录组分析,揭示了细胞类型特异性衰老途径的激活,如蛋白质平衡丧失、基因组不稳定和活性氧(ROS)。在6个性别共享的内分泌器官中,衰老严重破坏了功能性内分泌细胞的基因表达网络,并伴有免疫浸润和未折叠蛋白反应(UPR)的增强。机制研究表明,衰老相关的耗竭T细胞通过释放GZMK激活功能性内分泌细胞的MHC-I-UPR轴。小化学分子对GZMK受体的抑制作用抵消了UPR和衰老,提示免疫浸润可能是内分泌衰老的驱动因素。机器学习发现CD59在性别共享的功能性内分泌细胞中是一个新的衰老特征。对于两个性别特异性内分泌器官,衰老的卵巢和睾丸均表现出增强的免疫反应。与此同时,细胞类型特异性衰老相关的转录变化显示,ROS的增强主要发生在卵巢老化的卵泡细胞中,而睾丸老化的精原细胞则表现为DNA修复受损。本研究在单细胞分辨率上对内分泌系统衰老进行了全面的分析,为内分泌衰老的机制提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A single-cell transcriptomic landscape characterizes the endocrine system aging in the mouse.

The endocrine system is crucial for maintaining overall homeostasis. However, its cellular signatures have not been elucidated during aging. Here, we conducted the first-ever single-cell transcriptomic profiles from eight endocrine organs in young and aged mice, revealing the activation of cell-type-specific aging pathways, such as loss of proteostasis, genomic instability and reactive oxygen species (ROS). Among six sex-shared endocrine organs, aging severely impaired gene expression networks in functional endocrine cells, accompanied by enhanced immune infiltration and unfolded protein response (UPR). Mechanism investigations showed that expanded aging-associated exhausted T cells activated MHC-I-UPR axis across functional endocrine cells by releasing GZMK. The inhibition of GZMK receptors by small chemical molecules counteracted the UPR and senescence, suggesting the immune infiltration is a possible driver of endocrine aging. Machine learning identified CD59 as a novel aging feature in sex-shared functional endocrine cells. For two sex-specific endocrine organs, both aged ovaries and testes showed enhanced immune responses. Meanwhile, cell-type-specific aging-associated transcriptional changes revealed an enhanced ROS mainly in aged theca cells of ovaries, while aged spermatogonia in testes showed impaired DNA repair. This study provides a comprehensive analysis of endocrine system aging at single-cell resolution, offering profound insights into mechanisms of endocrine aging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein & Cell
Protein & Cell CELL BIOLOGY-
CiteScore
24.00
自引率
0.90%
发文量
1029
审稿时长
6-12 weeks
期刊介绍: Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信