赖因衣藻光合作用的co2依赖性促进代谢性光驯化

IF 3.6 2区 生物学 Q1 PLANT SCIENCES
Ana Pfleger, Erwann Arc, Thomas Roach
{"title":"赖因衣藻光合作用的co2依赖性促进代谢性光驯化","authors":"Ana Pfleger, Erwann Arc, Thomas Roach","doi":"10.1111/ppl.70461","DOIUrl":null,"url":null,"abstract":"<p><p>Light and inorganic carbon (C<sub>i</sub>) drive photosynthesis, which fuels cellular maintenance, energy storage, and growth in photosynthetic organisms. Despite its pivotal role, how primary metabolism adjusts to contrasting light and C<sub>i</sub> availability in algae remains elusive. Here, we characterized bioenergetics and profiled primary metabolites of photoautotrophic Chlamydomonas reinhardtii cultures grown under constant low/sub-saturating (LL) or high/saturating (HL) light with 2% (CO<sub>2</sub>) or ambient 0.04% (Amb) CO<sub>2</sub>. HL-Amb cells suffered photoinhibition and limitation of photosystem I electron flow at the donor side, but not the acceptor side, indicating use of alternative electron pathways to fuel ATP synthesis. Further, more glycolate was excreted under HL-Amb, indicative of photorespiration. In contrast, HL-CO<sub>2</sub> cells upregulated the cytochrome b<sub>6</sub>f complex, ascorbate metabolism, and PTOX2 for maintaining plastid redox homeostasis. Enhanced glycerol excretion under HL enabled dissipation of excess reducing equivalents to adjust the cellular energy balance. CO<sub>2</sub>-enhanced photosynthesis promoted respiration and primary metabolite accumulation, driving faster growth while promoting nitrogen (N) metabolism. Hence, C<sub>i</sub>-dependent photoacclimation influenced the interplay between the TCA cycle and N assimilation, as supported by proteomic data. Overall, abundant C<sub>i</sub> supported growth by promoting electron flow for C<sub>i</sub> assimilation, which supplied C skeletons for N assimilation while mitigating photorespiration and photoinhibition.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 5","pages":"e70461"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381912/pdf/","citationCount":"0","resultStr":"{\"title\":\"CO<sub>2</sub>-Dependent Promotion of Photosynthesis Drives Metabolic Photoacclimation in Chlamydomonas reinhardtii.\",\"authors\":\"Ana Pfleger, Erwann Arc, Thomas Roach\",\"doi\":\"10.1111/ppl.70461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Light and inorganic carbon (C<sub>i</sub>) drive photosynthesis, which fuels cellular maintenance, energy storage, and growth in photosynthetic organisms. Despite its pivotal role, how primary metabolism adjusts to contrasting light and C<sub>i</sub> availability in algae remains elusive. Here, we characterized bioenergetics and profiled primary metabolites of photoautotrophic Chlamydomonas reinhardtii cultures grown under constant low/sub-saturating (LL) or high/saturating (HL) light with 2% (CO<sub>2</sub>) or ambient 0.04% (Amb) CO<sub>2</sub>. HL-Amb cells suffered photoinhibition and limitation of photosystem I electron flow at the donor side, but not the acceptor side, indicating use of alternative electron pathways to fuel ATP synthesis. Further, more glycolate was excreted under HL-Amb, indicative of photorespiration. In contrast, HL-CO<sub>2</sub> cells upregulated the cytochrome b<sub>6</sub>f complex, ascorbate metabolism, and PTOX2 for maintaining plastid redox homeostasis. Enhanced glycerol excretion under HL enabled dissipation of excess reducing equivalents to adjust the cellular energy balance. CO<sub>2</sub>-enhanced photosynthesis promoted respiration and primary metabolite accumulation, driving faster growth while promoting nitrogen (N) metabolism. Hence, C<sub>i</sub>-dependent photoacclimation influenced the interplay between the TCA cycle and N assimilation, as supported by proteomic data. Overall, abundant C<sub>i</sub> supported growth by promoting electron flow for C<sub>i</sub> assimilation, which supplied C skeletons for N assimilation while mitigating photorespiration and photoinhibition.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 5\",\"pages\":\"e70461\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70461\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70461","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光和无机碳(Ci)驱动光合作用,为光合生物的细胞维持、能量储存和生长提供燃料。尽管其具有关键作用,但藻类的初级代谢如何适应不同的光和Ci利用率仍然是一个谜。在这里,我们研究了光自养莱茵衣藻(Chlamydomonas reinhardtii)培养物在恒定的低/亚饱和(LL)或高/饱和(HL)光(2% (CO2)或0.04% (Amb) CO2)下的生物能量学和主要代谢物。HL-Amb细胞在供体侧受到光抑制和光系统I电子流限制,而在受体侧则没有,表明使用替代电子途径来促进ATP合成。此外,在HL-Amb作用下,更多的乙醇酸分泌,表明光呼吸作用。相反,HL-CO2细胞上调细胞色素b6f复合物、抗坏血酸代谢和PTOX2以维持质体氧化还原稳态。在HL条件下,甘油分泌增强,使过量的还原性当量耗散,从而调节细胞能量平衡。co2增强的光合作用促进了呼吸和初级代谢物的积累,在促进氮代谢的同时加快了生长。因此,蛋白质组学数据支持,依赖于ci的光驯化影响了TCA循环和N同化之间的相互作用。总的来说,丰富的Ci通过促进Ci同化的电子流来支持生长,这为N同化提供了C骨架,同时减轻了光呼吸和光抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CO2-Dependent Promotion of Photosynthesis Drives Metabolic Photoacclimation in Chlamydomonas reinhardtii.

Light and inorganic carbon (Ci) drive photosynthesis, which fuels cellular maintenance, energy storage, and growth in photosynthetic organisms. Despite its pivotal role, how primary metabolism adjusts to contrasting light and Ci availability in algae remains elusive. Here, we characterized bioenergetics and profiled primary metabolites of photoautotrophic Chlamydomonas reinhardtii cultures grown under constant low/sub-saturating (LL) or high/saturating (HL) light with 2% (CO2) or ambient 0.04% (Amb) CO2. HL-Amb cells suffered photoinhibition and limitation of photosystem I electron flow at the donor side, but not the acceptor side, indicating use of alternative electron pathways to fuel ATP synthesis. Further, more glycolate was excreted under HL-Amb, indicative of photorespiration. In contrast, HL-CO2 cells upregulated the cytochrome b6f complex, ascorbate metabolism, and PTOX2 for maintaining plastid redox homeostasis. Enhanced glycerol excretion under HL enabled dissipation of excess reducing equivalents to adjust the cellular energy balance. CO2-enhanced photosynthesis promoted respiration and primary metabolite accumulation, driving faster growth while promoting nitrogen (N) metabolism. Hence, Ci-dependent photoacclimation influenced the interplay between the TCA cycle and N assimilation, as supported by proteomic data. Overall, abundant Ci supported growth by promoting electron flow for Ci assimilation, which supplied C skeletons for N assimilation while mitigating photorespiration and photoinhibition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信