Hao Li, Yanqun Zhang, Kaixuan Du, Xinlong Hu, Yan Mo, Di Xu, Shuji Wang, Baozhong Zhang
{"title":"干旱诱导玉米叶片光合、气孔和水力学在敏感和耐旱品种间的协调。","authors":"Hao Li, Yanqun Zhang, Kaixuan Du, Xinlong Hu, Yan Mo, Di Xu, Shuji Wang, Baozhong Zhang","doi":"10.1111/ppl.70487","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of drought-tolerant maize varieties in the context of climate change is critical. Although many studies have reported that the coordination of stomatal and hydraulic conductance of plant leaves ensures the net photosynthetic rate, it is unclear whether the arrangement of these three parameters is consistent among maize varieties differing in drought tolerance. Therefore, in this study, gas exchange parameters, hydraulic properties, and stomatal structure of leaves from eight maize varieties under full and deficit irrigation (DI) were determined. Drought tolerance of varieties was assessed using principal component analysis, and the coordination of photosynthesis, stomatal and hydraulic conductance, as well as stomatal behavior was analyzed between drought-sensitive (DSVs) and drought-tolerant varieties (DTVs). Eight maize varieties were categorized into DSVs and DTVs based on the evaluation of these agronomic and physiological parameters. Significant variety-specific responses of physiological parameters to DI were found, with at least one parameter being significantly affected in each variety. Leaf net photosynthesis rate and stomatal conductance showed a tight coordination with hydraulic conductance among DSVs; however, this coordination was potentially absent among DTVs. Simulations of stomatal behavior based on Ball-Berry and Medlyn models showed that DI significantly reduced the model sensitivity parameters of m and g<sub>1</sub> regardless of DSVs and DTVs. The study highlights the importance of physiological trait coordination in drought responses. The coordination between stomatal and hydraulic traits may be absent in DTVs, implying a potentially flexible adaptation strategy that could be exploited to improve maize drought tolerance.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 5","pages":"e70487"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drought-Induced Coordination of Photosynthesis, Stomata, and Hydraulics in Maize Leaves Between Sensitive and Tolerant Varieties.\",\"authors\":\"Hao Li, Yanqun Zhang, Kaixuan Du, Xinlong Hu, Yan Mo, Di Xu, Shuji Wang, Baozhong Zhang\",\"doi\":\"10.1111/ppl.70487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identification of drought-tolerant maize varieties in the context of climate change is critical. Although many studies have reported that the coordination of stomatal and hydraulic conductance of plant leaves ensures the net photosynthetic rate, it is unclear whether the arrangement of these three parameters is consistent among maize varieties differing in drought tolerance. Therefore, in this study, gas exchange parameters, hydraulic properties, and stomatal structure of leaves from eight maize varieties under full and deficit irrigation (DI) were determined. Drought tolerance of varieties was assessed using principal component analysis, and the coordination of photosynthesis, stomatal and hydraulic conductance, as well as stomatal behavior was analyzed between drought-sensitive (DSVs) and drought-tolerant varieties (DTVs). Eight maize varieties were categorized into DSVs and DTVs based on the evaluation of these agronomic and physiological parameters. Significant variety-specific responses of physiological parameters to DI were found, with at least one parameter being significantly affected in each variety. Leaf net photosynthesis rate and stomatal conductance showed a tight coordination with hydraulic conductance among DSVs; however, this coordination was potentially absent among DTVs. Simulations of stomatal behavior based on Ball-Berry and Medlyn models showed that DI significantly reduced the model sensitivity parameters of m and g<sub>1</sub> regardless of DSVs and DTVs. The study highlights the importance of physiological trait coordination in drought responses. The coordination between stomatal and hydraulic traits may be absent in DTVs, implying a potentially flexible adaptation strategy that could be exploited to improve maize drought tolerance.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 5\",\"pages\":\"e70487\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70487\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70487","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Drought-Induced Coordination of Photosynthesis, Stomata, and Hydraulics in Maize Leaves Between Sensitive and Tolerant Varieties.
Identification of drought-tolerant maize varieties in the context of climate change is critical. Although many studies have reported that the coordination of stomatal and hydraulic conductance of plant leaves ensures the net photosynthetic rate, it is unclear whether the arrangement of these three parameters is consistent among maize varieties differing in drought tolerance. Therefore, in this study, gas exchange parameters, hydraulic properties, and stomatal structure of leaves from eight maize varieties under full and deficit irrigation (DI) were determined. Drought tolerance of varieties was assessed using principal component analysis, and the coordination of photosynthesis, stomatal and hydraulic conductance, as well as stomatal behavior was analyzed between drought-sensitive (DSVs) and drought-tolerant varieties (DTVs). Eight maize varieties were categorized into DSVs and DTVs based on the evaluation of these agronomic and physiological parameters. Significant variety-specific responses of physiological parameters to DI were found, with at least one parameter being significantly affected in each variety. Leaf net photosynthesis rate and stomatal conductance showed a tight coordination with hydraulic conductance among DSVs; however, this coordination was potentially absent among DTVs. Simulations of stomatal behavior based on Ball-Berry and Medlyn models showed that DI significantly reduced the model sensitivity parameters of m and g1 regardless of DSVs and DTVs. The study highlights the importance of physiological trait coordination in drought responses. The coordination between stomatal and hydraulic traits may be absent in DTVs, implying a potentially flexible adaptation strategy that could be exploited to improve maize drought tolerance.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.