Khalida Bainour, Nabilah Zulkifli, Ka-Kei Sam, Juan C Navarro, Luis Filipe C Castro, Christopher J Glasby, Alexander C Shu-Chien, Óscar Monroig
{"title":"适应淡水的多毛菌具有完整的酶机制来合成长链多不饱和脂肪酸。","authors":"Khalida Bainour, Nabilah Zulkifli, Ka-Kei Sam, Juan C Navarro, Luis Filipe C Castro, Christopher J Glasby, Alexander C Shu-Chien, Óscar Monroig","doi":"10.1098/rsob.250159","DOIUrl":null,"url":null,"abstract":"<p><p>The sustainability of aquaculture is challenged by limited fishmeal and fish oil supplies, key sources of long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic acid (EPA, 20:5 n-3), docosahexaenoic acid (DHA, 22:6 n-3) and arachidonic acid (ARA, 20:4 n-6), essential for fish health and product quality. Polychaetes represent a promising alternative. While marine polychaetes show complete LC-PUFA biosynthetic pathways involving elongases (Elovl), front-end desaturases (Fed), and methyl-end desaturases (ω des), freshwater species remain poorly studied. We hypothesize that freshwater-adapted polychaetes exhibit enhanced LC-PUFA biosynthesis to compensate for limited dietary sources in freshwater environments. This study focuses on <i>Namalycastis rhodochorde</i>, a freshwater nereid polychaete found in Southeast Asia. We isolated and characterized elongase and desaturase genes from <i>N. rhodochorde</i> using a yeast-based heterologous expression system. Our results revealed three Elovl (Elovl2/5, Elovl4, Elovl1/7) that elongate PUFA substrates from C<sub>18</sub> to C<sub>22</sub>, two Fed (Fed1 with Δ5 and Fed2 with dual Δ6/Δ8 activities), and two ω des: a Δ12 desaturase enabling linoleic acid (18:2 n-6) synthesis, and an ω3 desaturase converting n-6 into n-3 PUFA. These findings indicate that <i>N. rhodochorde</i> has the enzymatic capacity to synthesize LC-PUFA like ARA and EPA, supporting its potential for sustainable biomass production using low-nutrient substrates.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 9","pages":"250159"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405942/pdf/","citationCount":"0","resultStr":"{\"title\":\"Freshwater-adapted polychaetes exhibit a complete enzymatic machinery for synthesizing long-chain polyunsaturated fatty acids.\",\"authors\":\"Khalida Bainour, Nabilah Zulkifli, Ka-Kei Sam, Juan C Navarro, Luis Filipe C Castro, Christopher J Glasby, Alexander C Shu-Chien, Óscar Monroig\",\"doi\":\"10.1098/rsob.250159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sustainability of aquaculture is challenged by limited fishmeal and fish oil supplies, key sources of long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic acid (EPA, 20:5 n-3), docosahexaenoic acid (DHA, 22:6 n-3) and arachidonic acid (ARA, 20:4 n-6), essential for fish health and product quality. Polychaetes represent a promising alternative. While marine polychaetes show complete LC-PUFA biosynthetic pathways involving elongases (Elovl), front-end desaturases (Fed), and methyl-end desaturases (ω des), freshwater species remain poorly studied. We hypothesize that freshwater-adapted polychaetes exhibit enhanced LC-PUFA biosynthesis to compensate for limited dietary sources in freshwater environments. This study focuses on <i>Namalycastis rhodochorde</i>, a freshwater nereid polychaete found in Southeast Asia. We isolated and characterized elongase and desaturase genes from <i>N. rhodochorde</i> using a yeast-based heterologous expression system. Our results revealed three Elovl (Elovl2/5, Elovl4, Elovl1/7) that elongate PUFA substrates from C<sub>18</sub> to C<sub>22</sub>, two Fed (Fed1 with Δ5 and Fed2 with dual Δ6/Δ8 activities), and two ω des: a Δ12 desaturase enabling linoleic acid (18:2 n-6) synthesis, and an ω3 desaturase converting n-6 into n-3 PUFA. These findings indicate that <i>N. rhodochorde</i> has the enzymatic capacity to synthesize LC-PUFA like ARA and EPA, supporting its potential for sustainable biomass production using low-nutrient substrates.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"15 9\",\"pages\":\"250159\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405942/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.250159\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.250159","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Freshwater-adapted polychaetes exhibit a complete enzymatic machinery for synthesizing long-chain polyunsaturated fatty acids.
The sustainability of aquaculture is challenged by limited fishmeal and fish oil supplies, key sources of long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic acid (EPA, 20:5 n-3), docosahexaenoic acid (DHA, 22:6 n-3) and arachidonic acid (ARA, 20:4 n-6), essential for fish health and product quality. Polychaetes represent a promising alternative. While marine polychaetes show complete LC-PUFA biosynthetic pathways involving elongases (Elovl), front-end desaturases (Fed), and methyl-end desaturases (ω des), freshwater species remain poorly studied. We hypothesize that freshwater-adapted polychaetes exhibit enhanced LC-PUFA biosynthesis to compensate for limited dietary sources in freshwater environments. This study focuses on Namalycastis rhodochorde, a freshwater nereid polychaete found in Southeast Asia. We isolated and characterized elongase and desaturase genes from N. rhodochorde using a yeast-based heterologous expression system. Our results revealed three Elovl (Elovl2/5, Elovl4, Elovl1/7) that elongate PUFA substrates from C18 to C22, two Fed (Fed1 with Δ5 and Fed2 with dual Δ6/Δ8 activities), and two ω des: a Δ12 desaturase enabling linoleic acid (18:2 n-6) synthesis, and an ω3 desaturase converting n-6 into n-3 PUFA. These findings indicate that N. rhodochorde has the enzymatic capacity to synthesize LC-PUFA like ARA and EPA, supporting its potential for sustainable biomass production using low-nutrient substrates.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.