{"title":"好的,坏的,还是两者都有?揭示LINC01133在肿瘤中的分子功能。","authors":"Leandro Teodoro Júnior, Mari Cleide Sogayar","doi":"10.3390/ncrna11040058","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Increasing evidence suggests that lncRNAs are core regulators in the field of tumor progression, with context-specific functions in oncogenic tumorigenesis. LINC01133, a lncRNA that has been identified as both an oncogene and a tumor suppressor, remains largely unexplored in terms of its molecular mechanisms. The purpose of this study was to conduct an in silico analysis, incorporating literature research on various cancer types, to investigate the structural and functional duality of LINC01133. This analysis aimed to identify pathways influenced by LINC01133 and evaluate its mechanism of action as a potential therapeutic target and diagnostic biomarker. <b>Methods:</b> In silico analyses and a narrative review of the literature were performed to predict conserved structural elements, functional internal loops, and overall conservation of the LINC01133 sequence among different vertebrate organisms, summarizing the empirical evidence regarding its roles as a tumor suppressor and tumor-promoting roles in various types of tumors. <b>Results:</b> LINC01133 harbors the evolutionarily conserved structural regions that might allow for binding to relevant driver signaling pathways, substantiating its specific functionality. Its action extends beyond classical tumor mechanisms, affecting proliferation, migration, invasion, and epigenetic pathways in various types of tumors, as indicated by the in silico results and narrative review of the literature we present here. Clinical outcome associations pointed to its potential as a biomarker. <b>Conclusions:</b> The dual character of LINC01133 in tumor biology further demonstrates its prospective therapeutic value, but complete elucidation of its mechanisms of action requires further investigation. This study establishes LINC01133 as a multifaceted lncRNA, supporting context-specific strategies in targeting its pathways, and calls for expanded research to harness its full potential in oncology.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389352/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Good, the Bad, or Both? Unveiling the Molecular Functions of LINC01133 in Tumors.\",\"authors\":\"Leandro Teodoro Júnior, Mari Cleide Sogayar\",\"doi\":\"10.3390/ncrna11040058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> Increasing evidence suggests that lncRNAs are core regulators in the field of tumor progression, with context-specific functions in oncogenic tumorigenesis. LINC01133, a lncRNA that has been identified as both an oncogene and a tumor suppressor, remains largely unexplored in terms of its molecular mechanisms. The purpose of this study was to conduct an in silico analysis, incorporating literature research on various cancer types, to investigate the structural and functional duality of LINC01133. This analysis aimed to identify pathways influenced by LINC01133 and evaluate its mechanism of action as a potential therapeutic target and diagnostic biomarker. <b>Methods:</b> In silico analyses and a narrative review of the literature were performed to predict conserved structural elements, functional internal loops, and overall conservation of the LINC01133 sequence among different vertebrate organisms, summarizing the empirical evidence regarding its roles as a tumor suppressor and tumor-promoting roles in various types of tumors. <b>Results:</b> LINC01133 harbors the evolutionarily conserved structural regions that might allow for binding to relevant driver signaling pathways, substantiating its specific functionality. Its action extends beyond classical tumor mechanisms, affecting proliferation, migration, invasion, and epigenetic pathways in various types of tumors, as indicated by the in silico results and narrative review of the literature we present here. Clinical outcome associations pointed to its potential as a biomarker. <b>Conclusions:</b> The dual character of LINC01133 in tumor biology further demonstrates its prospective therapeutic value, but complete elucidation of its mechanisms of action requires further investigation. This study establishes LINC01133 as a multifaceted lncRNA, supporting context-specific strategies in targeting its pathways, and calls for expanded research to harness its full potential in oncology.</p>\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"11 4\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna11040058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11040058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Good, the Bad, or Both? Unveiling the Molecular Functions of LINC01133 in Tumors.
Background/Objectives: Increasing evidence suggests that lncRNAs are core regulators in the field of tumor progression, with context-specific functions in oncogenic tumorigenesis. LINC01133, a lncRNA that has been identified as both an oncogene and a tumor suppressor, remains largely unexplored in terms of its molecular mechanisms. The purpose of this study was to conduct an in silico analysis, incorporating literature research on various cancer types, to investigate the structural and functional duality of LINC01133. This analysis aimed to identify pathways influenced by LINC01133 and evaluate its mechanism of action as a potential therapeutic target and diagnostic biomarker. Methods: In silico analyses and a narrative review of the literature were performed to predict conserved structural elements, functional internal loops, and overall conservation of the LINC01133 sequence among different vertebrate organisms, summarizing the empirical evidence regarding its roles as a tumor suppressor and tumor-promoting roles in various types of tumors. Results: LINC01133 harbors the evolutionarily conserved structural regions that might allow for binding to relevant driver signaling pathways, substantiating its specific functionality. Its action extends beyond classical tumor mechanisms, affecting proliferation, migration, invasion, and epigenetic pathways in various types of tumors, as indicated by the in silico results and narrative review of the literature we present here. Clinical outcome associations pointed to its potential as a biomarker. Conclusions: The dual character of LINC01133 in tumor biology further demonstrates its prospective therapeutic value, but complete elucidation of its mechanisms of action requires further investigation. This study establishes LINC01133 as a multifaceted lncRNA, supporting context-specific strategies in targeting its pathways, and calls for expanded research to harness its full potential in oncology.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.