{"title":"戊二醇对Wnt/β-Catenin通路诱导的Wistar大鼠糖尿病周围神经病变的神经保护作用","authors":"Renu Malik, Balvinder Singh, Ajay Singh Kushwah, Manish Kumar","doi":"10.1007/s12017-025-08881-x","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term hyperglycemia and insulin dysfunction deteriorate peripheral nerve functions, leading to sensory loss, spontaneous pain, and hypersensitivity (i.e., allodynia and hyperalgesia). Evidence indicates glucose-induced upregulation of the Wnt/β-catenin mechanism in diabetic peripheral neuropathy (DPN). Eriodictyol (Ed) has shown protective effects against glucotoxicity. The present study explored the bioactivity of Ed in streptozotocin (STZ) induced DPN and the role of the Wnt/β-catenin pathway. Ed or gabapentin (Gpn), or methyl vanillate (MV) was administered in Wistar rats for 4 weeks, starting 6 weeks after STZ administration. Ed ameliorated the mean body weight and mitigated polydipsia and polyphagia in DPN rats. The data indicated that Ed attenuated hyperglycemia, glycosylated hemoglobin (HbA1c) levels, and HOMA-IR, and enhanced circulating insulin levels and HOMA-β against STZ-induced DPN. MV (Wnt/β-catenin activator) caused a significant increase in STZ-induced hyperglycemia, HbA1c, HOMA-IR, and further decreased the insulin levels and HOMA-β in STZ-treated rats. Ed attenuated oxidative stress, inflammatory expression, level of advanced glycation end products, and nuclear factor kappa B in the sciatic nerve of STZ-treated neuropathic rats, and MV further potentiated these markers triggered by STZ. Interestingly, Ed and Gpn attenuated mRNA expression of Wnt1/β-catenin in the sciatic nerve of neuropathic rats. Hyperalgesia and allodynia were significantly ameliorated in Ed or Gpn-treated rats against DPN. Furthermore, Ed ameliorated the biochemical biomarkers, histopathological characteristics, and nociceptive-like responses in STZ and MV-treated rats. It is concluded that Ed can alleviate the pathogenic course of DPN. Wnt/β-catenin pathway might be involved in the eriodyctiol-triggered mitigation of nociceptive-like responses in diabetic rats.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"60"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective Activity of Eriodictyol Against Streptozotocin-Induced Diabetic Peripheral Neuropathy in Wistar Rats by Targeting Wnt/β-Catenin Pathway.\",\"authors\":\"Renu Malik, Balvinder Singh, Ajay Singh Kushwah, Manish Kumar\",\"doi\":\"10.1007/s12017-025-08881-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-term hyperglycemia and insulin dysfunction deteriorate peripheral nerve functions, leading to sensory loss, spontaneous pain, and hypersensitivity (i.e., allodynia and hyperalgesia). Evidence indicates glucose-induced upregulation of the Wnt/β-catenin mechanism in diabetic peripheral neuropathy (DPN). Eriodictyol (Ed) has shown protective effects against glucotoxicity. The present study explored the bioactivity of Ed in streptozotocin (STZ) induced DPN and the role of the Wnt/β-catenin pathway. Ed or gabapentin (Gpn), or methyl vanillate (MV) was administered in Wistar rats for 4 weeks, starting 6 weeks after STZ administration. Ed ameliorated the mean body weight and mitigated polydipsia and polyphagia in DPN rats. The data indicated that Ed attenuated hyperglycemia, glycosylated hemoglobin (HbA1c) levels, and HOMA-IR, and enhanced circulating insulin levels and HOMA-β against STZ-induced DPN. MV (Wnt/β-catenin activator) caused a significant increase in STZ-induced hyperglycemia, HbA1c, HOMA-IR, and further decreased the insulin levels and HOMA-β in STZ-treated rats. Ed attenuated oxidative stress, inflammatory expression, level of advanced glycation end products, and nuclear factor kappa B in the sciatic nerve of STZ-treated neuropathic rats, and MV further potentiated these markers triggered by STZ. Interestingly, Ed and Gpn attenuated mRNA expression of Wnt1/β-catenin in the sciatic nerve of neuropathic rats. Hyperalgesia and allodynia were significantly ameliorated in Ed or Gpn-treated rats against DPN. Furthermore, Ed ameliorated the biochemical biomarkers, histopathological characteristics, and nociceptive-like responses in STZ and MV-treated rats. It is concluded that Ed can alleviate the pathogenic course of DPN. Wnt/β-catenin pathway might be involved in the eriodyctiol-triggered mitigation of nociceptive-like responses in diabetic rats.</p>\",\"PeriodicalId\":19304,\"journal\":{\"name\":\"NeuroMolecular Medicine\",\"volume\":\"27 1\",\"pages\":\"60\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroMolecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-025-08881-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08881-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neuroprotective Activity of Eriodictyol Against Streptozotocin-Induced Diabetic Peripheral Neuropathy in Wistar Rats by Targeting Wnt/β-Catenin Pathway.
Long-term hyperglycemia and insulin dysfunction deteriorate peripheral nerve functions, leading to sensory loss, spontaneous pain, and hypersensitivity (i.e., allodynia and hyperalgesia). Evidence indicates glucose-induced upregulation of the Wnt/β-catenin mechanism in diabetic peripheral neuropathy (DPN). Eriodictyol (Ed) has shown protective effects against glucotoxicity. The present study explored the bioactivity of Ed in streptozotocin (STZ) induced DPN and the role of the Wnt/β-catenin pathway. Ed or gabapentin (Gpn), or methyl vanillate (MV) was administered in Wistar rats for 4 weeks, starting 6 weeks after STZ administration. Ed ameliorated the mean body weight and mitigated polydipsia and polyphagia in DPN rats. The data indicated that Ed attenuated hyperglycemia, glycosylated hemoglobin (HbA1c) levels, and HOMA-IR, and enhanced circulating insulin levels and HOMA-β against STZ-induced DPN. MV (Wnt/β-catenin activator) caused a significant increase in STZ-induced hyperglycemia, HbA1c, HOMA-IR, and further decreased the insulin levels and HOMA-β in STZ-treated rats. Ed attenuated oxidative stress, inflammatory expression, level of advanced glycation end products, and nuclear factor kappa B in the sciatic nerve of STZ-treated neuropathic rats, and MV further potentiated these markers triggered by STZ. Interestingly, Ed and Gpn attenuated mRNA expression of Wnt1/β-catenin in the sciatic nerve of neuropathic rats. Hyperalgesia and allodynia were significantly ameliorated in Ed or Gpn-treated rats against DPN. Furthermore, Ed ameliorated the biochemical biomarkers, histopathological characteristics, and nociceptive-like responses in STZ and MV-treated rats. It is concluded that Ed can alleviate the pathogenic course of DPN. Wnt/β-catenin pathway might be involved in the eriodyctiol-triggered mitigation of nociceptive-like responses in diabetic rats.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.