锂离子电池体积稳定高能阴极的熔盐自加药合成。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoqiao Li,Fanxiu Feng,Taiping Hu,Yong Wang,Chenji Hu,Jingyu Chen,Yilin Chen,Chun Cheng,Han Wang,Qinfeng Zheng,Yixiao Zhang,Yu-Shi He,Shenzhen Xu,Wei Zhang,Liwei Chen,Zi-Feng Ma,Linsen Li
{"title":"锂离子电池体积稳定高能阴极的熔盐自加药合成。","authors":"Xiaoqiao Li,Fanxiu Feng,Taiping Hu,Yong Wang,Chenji Hu,Jingyu Chen,Yilin Chen,Chun Cheng,Han Wang,Qinfeng Zheng,Yixiao Zhang,Yu-Shi He,Shenzhen Xu,Wei Zhang,Liwei Chen,Zi-Feng Ma,Linsen Li","doi":"10.1002/anie.202512729","DOIUrl":null,"url":null,"abstract":"High-energy lithium-ion batteries necessitate stable Ni-rich layered cathodes, yet critical challenges such as lattice distortion and surface structure collapse remain unresolved. While conventional high-valence doping greatly alleviates surface degradations, it is ineffective in stabilizing bulk lattice due to dopant segregation. Here, we propose a slightly Li-rich (SLR) lattice design by partially substituting transition-metal (TM) ions with Li+ ions in TM layers, reducing electrostatic repulsion against high-valence dopants. Integrated theory-experiment analyses reveal uniform bulk doping of Mo6+ in SLR cathodes, realized via a self-medicating and scalable molten-salt synthesis route. An optimized high-energy cathode (880 Wh kg-1 cathode) achieves 89% retention after 1000 cycles in Ah-scale pouch cells, sustains 10C ultrafast charging/discharging for 300 cycles (3.8 min to 80% state-of-charge), and operates stably in all-solid-state batteries. Multimodal characterizations link uniform Mo6+ doping to suppressed lattice strain and structural collapse. This work establishes a new paradigm for bulk lattice engineering of advanced battery cathodes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":"e202512729"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Medicating Molten-Salt Synthesis of Bulk-Stabilized High-Energy Cathodes for Li-Ion Batteries.\",\"authors\":\"Xiaoqiao Li,Fanxiu Feng,Taiping Hu,Yong Wang,Chenji Hu,Jingyu Chen,Yilin Chen,Chun Cheng,Han Wang,Qinfeng Zheng,Yixiao Zhang,Yu-Shi He,Shenzhen Xu,Wei Zhang,Liwei Chen,Zi-Feng Ma,Linsen Li\",\"doi\":\"10.1002/anie.202512729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-energy lithium-ion batteries necessitate stable Ni-rich layered cathodes, yet critical challenges such as lattice distortion and surface structure collapse remain unresolved. While conventional high-valence doping greatly alleviates surface degradations, it is ineffective in stabilizing bulk lattice due to dopant segregation. Here, we propose a slightly Li-rich (SLR) lattice design by partially substituting transition-metal (TM) ions with Li+ ions in TM layers, reducing electrostatic repulsion against high-valence dopants. Integrated theory-experiment analyses reveal uniform bulk doping of Mo6+ in SLR cathodes, realized via a self-medicating and scalable molten-salt synthesis route. An optimized high-energy cathode (880 Wh kg-1 cathode) achieves 89% retention after 1000 cycles in Ah-scale pouch cells, sustains 10C ultrafast charging/discharging for 300 cycles (3.8 min to 80% state-of-charge), and operates stably in all-solid-state batteries. Multimodal characterizations link uniform Mo6+ doping to suppressed lattice strain and structural collapse. This work establishes a new paradigm for bulk lattice engineering of advanced battery cathodes.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"20 1\",\"pages\":\"e202512729\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202512729\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202512729","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高能锂离子电池需要稳定的富镍层状阴极,但晶格畸变和表面结构崩溃等关键挑战仍未解决。虽然常规的高价掺杂能有效地缓解表面降解,但由于掺杂物的偏析,在稳定体晶格方面效果不佳。在这里,我们提出了一种略富锂(SLR)晶格设计,通过在TM层中用Li+离子部分取代过渡金属(TM)离子,减少对高价掺杂剂的静电排斥。理论与实验相结合的分析表明,通过自加药和可扩展的熔盐合成路线,可以在SLR阴极中均匀地掺杂Mo6+。优化的高能阴极(880 Wh kg-1阴极)在ah级袋状电池中循环1000次后可达到89%的保留率,在300次循环(3.8分钟至80%充电状态)中保持10C超快充放电,并在全固态电池中稳定运行。多模态表征将均匀Mo6+掺杂与抑制晶格应变和结构坍塌联系起来。这项工作为先进电池阴极的体晶格工程建立了一个新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Medicating Molten-Salt Synthesis of Bulk-Stabilized High-Energy Cathodes for Li-Ion Batteries.
High-energy lithium-ion batteries necessitate stable Ni-rich layered cathodes, yet critical challenges such as lattice distortion and surface structure collapse remain unresolved. While conventional high-valence doping greatly alleviates surface degradations, it is ineffective in stabilizing bulk lattice due to dopant segregation. Here, we propose a slightly Li-rich (SLR) lattice design by partially substituting transition-metal (TM) ions with Li+ ions in TM layers, reducing electrostatic repulsion against high-valence dopants. Integrated theory-experiment analyses reveal uniform bulk doping of Mo6+ in SLR cathodes, realized via a self-medicating and scalable molten-salt synthesis route. An optimized high-energy cathode (880 Wh kg-1 cathode) achieves 89% retention after 1000 cycles in Ah-scale pouch cells, sustains 10C ultrafast charging/discharging for 300 cycles (3.8 min to 80% state-of-charge), and operates stably in all-solid-state batteries. Multimodal characterizations link uniform Mo6+ doping to suppressed lattice strain and structural collapse. This work establishes a new paradigm for bulk lattice engineering of advanced battery cathodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信