Adeeb Shehzad , Júlia Alves , Mazhar Ul-Islam , Abdullah Khamis Al Saidi , Sofia O.D. Duarte , Mohammad Sherjeel Javed Khan , Pedro Fonte
{"title":"肿瘤纳米医学:诊断突破和治疗前沿。","authors":"Adeeb Shehzad , Júlia Alves , Mazhar Ul-Islam , Abdullah Khamis Al Saidi , Sofia O.D. Duarte , Mohammad Sherjeel Javed Khan , Pedro Fonte","doi":"10.1016/j.nano.2025.102854","DOIUrl":null,"url":null,"abstract":"<div><div>Nanomedicine is a multidisciplinary field, offering significant promises for cancer detection and therapy. Nanoparticles (NPs), nanoprobes and nanobiosensors can be tailored to achieve highly sensitive tumor detection by contrast imaging techniques. The application of directed drug delivery for cancer therapies can be achieved via the formulation and tailoring of drug-loaded nanocarriers. NPs have been employed as carrier to transport drugs or biological molecules to tumor tissues via active or passive mechanisms, consequently improving treatment outcomes and minimize harmful effects. However, nanomedicine translation has been hindered by augmented permeability and retention and ICI of the TME, limiting improvement and potential outcomes of patients. TME, consisting of cancerous cells, CAFs or TAFs, specific immune cells, and the stroma, performs a crucial part in contributing to cancer resistance to nanotherapy. This review summarizes nanotechnology application in the identification and treatment of cancers by exploring pathophysiological features, mechanisms and limitation of nanomedicine in cancer.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"69 ","pages":"Article 102854"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomedicine in oncology: Diagnostic breakthroughs and therapeutic Frontiers\",\"authors\":\"Adeeb Shehzad , Júlia Alves , Mazhar Ul-Islam , Abdullah Khamis Al Saidi , Sofia O.D. Duarte , Mohammad Sherjeel Javed Khan , Pedro Fonte\",\"doi\":\"10.1016/j.nano.2025.102854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanomedicine is a multidisciplinary field, offering significant promises for cancer detection and therapy. Nanoparticles (NPs), nanoprobes and nanobiosensors can be tailored to achieve highly sensitive tumor detection by contrast imaging techniques. The application of directed drug delivery for cancer therapies can be achieved via the formulation and tailoring of drug-loaded nanocarriers. NPs have been employed as carrier to transport drugs or biological molecules to tumor tissues via active or passive mechanisms, consequently improving treatment outcomes and minimize harmful effects. However, nanomedicine translation has been hindered by augmented permeability and retention and ICI of the TME, limiting improvement and potential outcomes of patients. TME, consisting of cancerous cells, CAFs or TAFs, specific immune cells, and the stroma, performs a crucial part in contributing to cancer resistance to nanotherapy. This review summarizes nanotechnology application in the identification and treatment of cancers by exploring pathophysiological features, mechanisms and limitation of nanomedicine in cancer.</div></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"69 \",\"pages\":\"Article 102854\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963425000553\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963425000553","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Nanomedicine in oncology: Diagnostic breakthroughs and therapeutic Frontiers
Nanomedicine is a multidisciplinary field, offering significant promises for cancer detection and therapy. Nanoparticles (NPs), nanoprobes and nanobiosensors can be tailored to achieve highly sensitive tumor detection by contrast imaging techniques. The application of directed drug delivery for cancer therapies can be achieved via the formulation and tailoring of drug-loaded nanocarriers. NPs have been employed as carrier to transport drugs or biological molecules to tumor tissues via active or passive mechanisms, consequently improving treatment outcomes and minimize harmful effects. However, nanomedicine translation has been hindered by augmented permeability and retention and ICI of the TME, limiting improvement and potential outcomes of patients. TME, consisting of cancerous cells, CAFs or TAFs, specific immune cells, and the stroma, performs a crucial part in contributing to cancer resistance to nanotherapy. This review summarizes nanotechnology application in the identification and treatment of cancers by exploring pathophysiological features, mechanisms and limitation of nanomedicine in cancer.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.