Ultrack:跨越生物尺度推动细胞追踪的极限。

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jordão Bragantini, Ilan Theodoro, Xiang Zhao, Teun A P M Huijben, Eduardo Hirata-Miyasaki, Shruthi VijayKumar, Akilandeswari Balasubramanian, Tiger Lao, Richa Agrawal, Sheng Xiao, Jan Lammerding, Shalin Mehta, Alexandre X Falcão, Adrian Jacobo, Merlin Lange, Loïc A Royer
{"title":"Ultrack:跨越生物尺度推动细胞追踪的极限。","authors":"Jordão Bragantini, Ilan Theodoro, Xiang Zhao, Teun A P M Huijben, Eduardo Hirata-Miyasaki, Shruthi VijayKumar, Akilandeswari Balasubramanian, Tiger Lao, Richa Agrawal, Sheng Xiao, Jan Lammerding, Shalin Mehta, Alexandre X Falcão, Adrian Jacobo, Merlin Lange, Loïc A Royer","doi":"10.1038/s41592-025-02778-0","DOIUrl":null,"url":null,"abstract":"<p><p>Tracking live cells across two-dimensional, three-dimensional (3D) and multichannel time-lapse recordings is crucial for understanding tissue-scale biological processes. Despite advancements in imaging technology, accurately tracking cells remains challenging, particularly in complex and crowded tissues where cell segmentation is often ambiguous. We present Ultrack, a versatile and scalable cell tracking method that tackles this challenge by considering candidate segmentations derived from multiple algorithms and parameter sets. Ultrack leverages temporal consistency to select optimal segments, ensuring robust performance even under segmentation uncertainty. We validate our method on diverse datasets, including terabyte-scale developmental time-lapse recordings of zebrafish, fruit fly and nematode embryos, as well as multicolor and label-free cellular imaging. We demonstrate that Ultrack achieves superior or comparable performance in the cell tracking challenge, particularly when tracking densely packed 3D embryonic cells over extended periods. Moreover, we propose an approach to tracking validation via dual-channel sparse labeling that enables high-fidelity ground-truth generation, pushing the boundaries of long-term cell tracking assessment. Our method is freely available as a Python package with Fiji and Napari plugins and can be deployed in a high-performance computing environment, facilitating widespread adoption by the research community.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrack: pushing the limits of cell tracking across biological scales.\",\"authors\":\"Jordão Bragantini, Ilan Theodoro, Xiang Zhao, Teun A P M Huijben, Eduardo Hirata-Miyasaki, Shruthi VijayKumar, Akilandeswari Balasubramanian, Tiger Lao, Richa Agrawal, Sheng Xiao, Jan Lammerding, Shalin Mehta, Alexandre X Falcão, Adrian Jacobo, Merlin Lange, Loïc A Royer\",\"doi\":\"10.1038/s41592-025-02778-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tracking live cells across two-dimensional, three-dimensional (3D) and multichannel time-lapse recordings is crucial for understanding tissue-scale biological processes. Despite advancements in imaging technology, accurately tracking cells remains challenging, particularly in complex and crowded tissues where cell segmentation is often ambiguous. We present Ultrack, a versatile and scalable cell tracking method that tackles this challenge by considering candidate segmentations derived from multiple algorithms and parameter sets. Ultrack leverages temporal consistency to select optimal segments, ensuring robust performance even under segmentation uncertainty. We validate our method on diverse datasets, including terabyte-scale developmental time-lapse recordings of zebrafish, fruit fly and nematode embryos, as well as multicolor and label-free cellular imaging. We demonstrate that Ultrack achieves superior or comparable performance in the cell tracking challenge, particularly when tracking densely packed 3D embryonic cells over extended periods. Moreover, we propose an approach to tracking validation via dual-channel sparse labeling that enables high-fidelity ground-truth generation, pushing the boundaries of long-term cell tracking assessment. Our method is freely available as a Python package with Fiji and Napari plugins and can be deployed in a high-performance computing environment, facilitating widespread adoption by the research community.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02778-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02778-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

通过二维,三维(3D)和多通道延时记录跟踪活细胞对于理解组织尺度的生物过程至关重要。尽管成像技术取得了进步,但准确跟踪细胞仍然具有挑战性,特别是在复杂和拥挤的组织中,细胞分割往往是模糊的。我们提出了Ultrack,一种通用的、可扩展的细胞跟踪方法,通过考虑从多个算法和参数集派生的候选分割来解决这一挑战。Ultrack利用时间一致性来选择最佳分段,即使在分段不确定的情况下也能确保稳健的性能。我们在不同的数据集上验证了我们的方法,包括斑马鱼、果蝇和线虫胚胎的tb级发育延时记录,以及多色和无标签的细胞成像。我们证明,Ultrack在细胞跟踪挑战中取得了卓越或相当的性能,特别是在长时间跟踪密集排列的3D胚胎细胞时。此外,我们提出了一种通过双通道稀疏标记进行跟踪验证的方法,该方法能够实现高保真的地面真实值生成,从而突破了长期细胞跟踪评估的界限。我们的方法作为带有斐济和Napari插件的Python包免费提供,可以部署在高性能计算环境中,促进研究社区的广泛采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrack: pushing the limits of cell tracking across biological scales.

Tracking live cells across two-dimensional, three-dimensional (3D) and multichannel time-lapse recordings is crucial for understanding tissue-scale biological processes. Despite advancements in imaging technology, accurately tracking cells remains challenging, particularly in complex and crowded tissues where cell segmentation is often ambiguous. We present Ultrack, a versatile and scalable cell tracking method that tackles this challenge by considering candidate segmentations derived from multiple algorithms and parameter sets. Ultrack leverages temporal consistency to select optimal segments, ensuring robust performance even under segmentation uncertainty. We validate our method on diverse datasets, including terabyte-scale developmental time-lapse recordings of zebrafish, fruit fly and nematode embryos, as well as multicolor and label-free cellular imaging. We demonstrate that Ultrack achieves superior or comparable performance in the cell tracking challenge, particularly when tracking densely packed 3D embryonic cells over extended periods. Moreover, we propose an approach to tracking validation via dual-channel sparse labeling that enables high-fidelity ground-truth generation, pushing the boundaries of long-term cell tracking assessment. Our method is freely available as a Python package with Fiji and Napari plugins and can be deployed in a high-performance computing environment, facilitating widespread adoption by the research community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信