通过交叉验证多尺度多模态数据重建小鼠大脑单个神经元的连接组。

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Feng Xiong, Lijuan Liu, Hanchuan Peng
{"title":"通过交叉验证多尺度多模态数据重建小鼠大脑单个神经元的连接组。","authors":"Feng Xiong, Lijuan Liu, Hanchuan Peng","doi":"10.1038/s41592-025-02784-2","DOIUrl":null,"url":null,"abstract":"<p><p>Brain networks, or connectomes, have inspired research at macro-, meso- and micro-scales. However, the rise of single-cell technologies necessitates inferring connectomes consisting of individual neurons projecting throughout the brain. Her, we present a scalable approach to map single-neuron connectivity at the whole-brain scale using two complementary methods. We first generated an arbor-net by probabilistically pairing dendritic and axonal arbors of 20,247 neurons registered to the Allen Brain Atlas. We also produced a bouton-net based on 2.57 million putative axonal boutons from 1,877 fully reconstructed neurons and probabilistic pairing of these full-morphology datasets. Cross-validation of both networks showed statistical consistency in spatially and anatomically modular distributions of neuronal connections, corresponding to functional modules in the mouse brain. We found that single-neuron connections correlated more strongly with gene coexpression than the full-brain mesoscale connectome. Our network analysis, comparing the connectomes with alternative brain architectures, identified nonrandom subnetwork patterns. Overall, our data indicate rich granularity and strong modular diversity in mouse brain networks.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of a connectome of single neurons in mouse brains by cross-validating multi-scale multi-modality data.\",\"authors\":\"Feng Xiong, Lijuan Liu, Hanchuan Peng\",\"doi\":\"10.1038/s41592-025-02784-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain networks, or connectomes, have inspired research at macro-, meso- and micro-scales. However, the rise of single-cell technologies necessitates inferring connectomes consisting of individual neurons projecting throughout the brain. Her, we present a scalable approach to map single-neuron connectivity at the whole-brain scale using two complementary methods. We first generated an arbor-net by probabilistically pairing dendritic and axonal arbors of 20,247 neurons registered to the Allen Brain Atlas. We also produced a bouton-net based on 2.57 million putative axonal boutons from 1,877 fully reconstructed neurons and probabilistic pairing of these full-morphology datasets. Cross-validation of both networks showed statistical consistency in spatially and anatomically modular distributions of neuronal connections, corresponding to functional modules in the mouse brain. We found that single-neuron connections correlated more strongly with gene coexpression than the full-brain mesoscale connectome. Our network analysis, comparing the connectomes with alternative brain architectures, identified nonrandom subnetwork patterns. Overall, our data indicate rich granularity and strong modular diversity in mouse brain networks.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02784-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02784-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大脑网络或连接体激发了宏观、中观和微观尺度的研究。然而,单细胞技术的兴起需要推断连接体由投射在整个大脑中的单个神经元组成。在她的研究中,我们提出了一种可扩展的方法,使用两种互补的方法在全脑范围内绘制单个神经元的连接。我们首先通过概率配对20,247个神经元的树突和轴突树枝,生成了一个树突网络,这些神经元已登记在艾伦脑图谱中。我们还基于来自1877个完全重建的神经元的257万个假定轴突钮扣和这些全形态数据集的概率配对,制作了一个钮扣网。两个网络的交叉验证显示,在空间和解剖上神经元连接的模块化分布具有统计学一致性,对应于小鼠大脑中的功能模块。我们发现,与全脑中尺度连接组相比,单个神经元连接与基因共表达的相关性更强。我们的网络分析,将连接体与其他大脑结构进行比较,确定了非随机子网络模式。总体而言,我们的数据表明小鼠大脑网络具有丰富的粒度和强大的模块化多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of a connectome of single neurons in mouse brains by cross-validating multi-scale multi-modality data.

Brain networks, or connectomes, have inspired research at macro-, meso- and micro-scales. However, the rise of single-cell technologies necessitates inferring connectomes consisting of individual neurons projecting throughout the brain. Her, we present a scalable approach to map single-neuron connectivity at the whole-brain scale using two complementary methods. We first generated an arbor-net by probabilistically pairing dendritic and axonal arbors of 20,247 neurons registered to the Allen Brain Atlas. We also produced a bouton-net based on 2.57 million putative axonal boutons from 1,877 fully reconstructed neurons and probabilistic pairing of these full-morphology datasets. Cross-validation of both networks showed statistical consistency in spatially and anatomically modular distributions of neuronal connections, corresponding to functional modules in the mouse brain. We found that single-neuron connections correlated more strongly with gene coexpression than the full-brain mesoscale connectome. Our network analysis, comparing the connectomes with alternative brain architectures, identified nonrandom subnetwork patterns. Overall, our data indicate rich granularity and strong modular diversity in mouse brain networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信