Biao Huang, Pedro Medina, Tianyi Ma, Megan E Schreiber, Zhongwei Li
{"title":"人多能干细胞诱导肾元祖细胞的扩增及肾元类器官的生成。","authors":"Biao Huang, Pedro Medina, Tianyi Ma, Megan E Schreiber, Zhongwei Li","doi":"10.1038/s41596-025-01236-7","DOIUrl":null,"url":null,"abstract":"<p><p>Nephron progenitor cells (NPCs) have a central role in kidney organogenesis: they self-renew and differentiate into nephrons, the functional units of the kidney. Human pluripotent stem cells (hPSCs) can transiently produce induced nephron progenitor-like cells (iNPCs), which then differentiate into nephron organoids. Here, we describe a protocol to purify and expand the hPSC-derived iNPCs in a regular monolayer culture format with an optimized iNPC culture medium. Under this culture condition, iNPCs are programmed to a state with their transcriptome much closer to primary human NPCs than the transient hPSC-derived iNPCs. By following this protocol, iNPC lines can be derived from any hPSC lines, exhibiting a stable cell proliferation rate and retaining NPC marker gene expression over long-term culture. We also describe a protocol to generate nephron organoids from the iNPC lines. These iNPC-derived nephron organoids show minimal off-target cell types compared to hPSC-derived kidney organoids, with enhanced podocyte maturity. This protocol consists of a modified 10-d protocol to generate iNPCs from hPSCs, an iNPC expansion phase with a unique chemically defined iNPC expansion medium called 'hNPSR-v2' and a stepwise 21-d differentiation protocol to generate nephron organoids from iNPCs on an air-liquid interface. Experience in culturing and differentiating hPSCs is required to conduct this protocol, which can be executed within 1.5-2 months.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expansion of human pluripotent stem cell-induced nephron progenitor cells (iNPCs) and the generation of nephron organoids from iNPCs.\",\"authors\":\"Biao Huang, Pedro Medina, Tianyi Ma, Megan E Schreiber, Zhongwei Li\",\"doi\":\"10.1038/s41596-025-01236-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nephron progenitor cells (NPCs) have a central role in kidney organogenesis: they self-renew and differentiate into nephrons, the functional units of the kidney. Human pluripotent stem cells (hPSCs) can transiently produce induced nephron progenitor-like cells (iNPCs), which then differentiate into nephron organoids. Here, we describe a protocol to purify and expand the hPSC-derived iNPCs in a regular monolayer culture format with an optimized iNPC culture medium. Under this culture condition, iNPCs are programmed to a state with their transcriptome much closer to primary human NPCs than the transient hPSC-derived iNPCs. By following this protocol, iNPC lines can be derived from any hPSC lines, exhibiting a stable cell proliferation rate and retaining NPC marker gene expression over long-term culture. We also describe a protocol to generate nephron organoids from the iNPC lines. These iNPC-derived nephron organoids show minimal off-target cell types compared to hPSC-derived kidney organoids, with enhanced podocyte maturity. This protocol consists of a modified 10-d protocol to generate iNPCs from hPSCs, an iNPC expansion phase with a unique chemically defined iNPC expansion medium called 'hNPSR-v2' and a stepwise 21-d differentiation protocol to generate nephron organoids from iNPCs on an air-liquid interface. Experience in culturing and differentiating hPSCs is required to conduct this protocol, which can be executed within 1.5-2 months.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01236-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01236-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Expansion of human pluripotent stem cell-induced nephron progenitor cells (iNPCs) and the generation of nephron organoids from iNPCs.
Nephron progenitor cells (NPCs) have a central role in kidney organogenesis: they self-renew and differentiate into nephrons, the functional units of the kidney. Human pluripotent stem cells (hPSCs) can transiently produce induced nephron progenitor-like cells (iNPCs), which then differentiate into nephron organoids. Here, we describe a protocol to purify and expand the hPSC-derived iNPCs in a regular monolayer culture format with an optimized iNPC culture medium. Under this culture condition, iNPCs are programmed to a state with their transcriptome much closer to primary human NPCs than the transient hPSC-derived iNPCs. By following this protocol, iNPC lines can be derived from any hPSC lines, exhibiting a stable cell proliferation rate and retaining NPC marker gene expression over long-term culture. We also describe a protocol to generate nephron organoids from the iNPC lines. These iNPC-derived nephron organoids show minimal off-target cell types compared to hPSC-derived kidney organoids, with enhanced podocyte maturity. This protocol consists of a modified 10-d protocol to generate iNPCs from hPSCs, an iNPC expansion phase with a unique chemically defined iNPC expansion medium called 'hNPSR-v2' and a stepwise 21-d differentiation protocol to generate nephron organoids from iNPCs on an air-liquid interface. Experience in culturing and differentiating hPSCs is required to conduct this protocol, which can be executed within 1.5-2 months.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.