Zhiren Wang, Wenpan Li, Yanhao Jiang, Teng Ma, Mengwen Li, Shuang Wu, Tuyen Ba Tran, Leyla Estrella Cordova, Ethan Lin, Aaron James Scott, Jennifer Erdrich, Joyce Schroeder, Pavani Chalasani, Jianqin Lu
{"title":"鞘脂衍生的紫杉醇纳米囊泡提高了三阴性乳腺癌和胰腺癌联合治疗的疗效。","authors":"Zhiren Wang, Wenpan Li, Yanhao Jiang, Teng Ma, Mengwen Li, Shuang Wu, Tuyen Ba Tran, Leyla Estrella Cordova, Ethan Lin, Aaron James Scott, Jennifer Erdrich, Joyce Schroeder, Pavani Chalasani, Jianqin Lu","doi":"10.1038/s43018-025-01029-7","DOIUrl":null,"url":null,"abstract":"<p><p>Taxol and Abraxane, the US Food and Drug Administration-approved paclitaxel (PTX) formulations, have revealed hypersensitivity due to excipients and mediocre efficacy due to insufficient tumor penetration, respectively. Here we developed a sphingolipid-derived PTX nanovesicle (paclitaxome) via covalently conjugating PTX to sphingomyelin, which improved pharmacokinetics and enhanced efficacy in metastatic triple-negative breast cancer and pancreatic cancer female mice and reduced myelosuppression. To bolster tumor penetration and reduce phagocytosis, we engineered a cationization-enabled transcytosis machinery by installing an ultra-pH-sensitive azepane (AZE) probe into paclitaxome and masked nanovesicle surface with a CD47 'self' peptide (CD47p). The resulting CD47p/AZE-paclitaxome synchronized the co-delivery of gemcitabine or carboplatin to boost tumor inhibition and eradicate metastasis in late-stage KPC-Luc pancreatic cancer model and prevent tumor relapse and extend survival in postsurgical 4T1-Luc2 triple-negative breast cancer model in female mice. CD47p/AZE-paclitaxome also outperformed previous promising PTX nanoformulations. Finally, the series of nanoparticle modifications was applied to camptothecin, demonstrating its generalizability.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":28.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sphingolipid-derived paclitaxel nanovesicle enhances efficacy of combination therapies in triple-negative breast cancer and pancreatic cancer.\",\"authors\":\"Zhiren Wang, Wenpan Li, Yanhao Jiang, Teng Ma, Mengwen Li, Shuang Wu, Tuyen Ba Tran, Leyla Estrella Cordova, Ethan Lin, Aaron James Scott, Jennifer Erdrich, Joyce Schroeder, Pavani Chalasani, Jianqin Lu\",\"doi\":\"10.1038/s43018-025-01029-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Taxol and Abraxane, the US Food and Drug Administration-approved paclitaxel (PTX) formulations, have revealed hypersensitivity due to excipients and mediocre efficacy due to insufficient tumor penetration, respectively. Here we developed a sphingolipid-derived PTX nanovesicle (paclitaxome) via covalently conjugating PTX to sphingomyelin, which improved pharmacokinetics and enhanced efficacy in metastatic triple-negative breast cancer and pancreatic cancer female mice and reduced myelosuppression. To bolster tumor penetration and reduce phagocytosis, we engineered a cationization-enabled transcytosis machinery by installing an ultra-pH-sensitive azepane (AZE) probe into paclitaxome and masked nanovesicle surface with a CD47 'self' peptide (CD47p). The resulting CD47p/AZE-paclitaxome synchronized the co-delivery of gemcitabine or carboplatin to boost tumor inhibition and eradicate metastasis in late-stage KPC-Luc pancreatic cancer model and prevent tumor relapse and extend survival in postsurgical 4T1-Luc2 triple-negative breast cancer model in female mice. CD47p/AZE-paclitaxome also outperformed previous promising PTX nanoformulations. Finally, the series of nanoparticle modifications was applied to camptothecin, demonstrating its generalizability.</p>\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":28.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s43018-025-01029-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-01029-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
A sphingolipid-derived paclitaxel nanovesicle enhances efficacy of combination therapies in triple-negative breast cancer and pancreatic cancer.
Taxol and Abraxane, the US Food and Drug Administration-approved paclitaxel (PTX) formulations, have revealed hypersensitivity due to excipients and mediocre efficacy due to insufficient tumor penetration, respectively. Here we developed a sphingolipid-derived PTX nanovesicle (paclitaxome) via covalently conjugating PTX to sphingomyelin, which improved pharmacokinetics and enhanced efficacy in metastatic triple-negative breast cancer and pancreatic cancer female mice and reduced myelosuppression. To bolster tumor penetration and reduce phagocytosis, we engineered a cationization-enabled transcytosis machinery by installing an ultra-pH-sensitive azepane (AZE) probe into paclitaxome and masked nanovesicle surface with a CD47 'self' peptide (CD47p). The resulting CD47p/AZE-paclitaxome synchronized the co-delivery of gemcitabine or carboplatin to boost tumor inhibition and eradicate metastasis in late-stage KPC-Luc pancreatic cancer model and prevent tumor relapse and extend survival in postsurgical 4T1-Luc2 triple-negative breast cancer model in female mice. CD47p/AZE-paclitaxome also outperformed previous promising PTX nanoformulations. Finally, the series of nanoparticle modifications was applied to camptothecin, demonstrating its generalizability.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.