线粒体碱基编辑器的改变提高了小鼠模型生成的靶向编辑效率。

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Therapy. Nucleic Acids Pub Date : 2025-08-11 eCollection Date: 2025-09-09 DOI:10.1016/j.omtn.2025.102678
Seongho Hong, Sol Pin Kim, Sanghun Kim, Soo Kyung Kang, Sungmo Jung, Yeji Oh, Seung Hee Choi, Su Bin Lee, Hou Cha, Jieun Kim, Jiyoung Bae, Jiyoon Park, Kyoungmi Kim, Chang Geun Choi, Soo-Ji Park, Do Hyun Kim, Lark Kyun Kim, Je Kyung Seong, Hyunji Lee
{"title":"线粒体碱基编辑器的改变提高了小鼠模型生成的靶向编辑效率。","authors":"Seongho Hong, Sol Pin Kim, Sanghun Kim, Soo Kyung Kang, Sungmo Jung, Yeji Oh, Seung Hee Choi, Su Bin Lee, Hou Cha, Jieun Kim, Jiyoung Bae, Jiyoon Park, Kyoungmi Kim, Chang Geun Choi, Soo-Ji Park, Do Hyun Kim, Lark Kyun Kim, Je Kyung Seong, Hyunji Lee","doi":"10.1016/j.omtn.2025.102678","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial DNA (mtDNA) base editors are powerful tools for investigating mitochondrial diseases. However, their editing efficiency can vary significantly depending on the target site within the mtDNA. In this study, we developed two improved versions of the mitochondrial adenine base editor (Hifi-sTALED and αnHifi-sTALED) by modifying components other than the TadA8e-V28R deaminase variant. These enhancements significantly increased editing efficiency while preserving minimal off-target effects across the transcriptome. Using these optimized editors, we achieved improved mtDNA editing in mouse embryos and successfully generated <i>mt-Rnr1</i> mutant mice with high heteroplasmic loads. Functional analyses revealed that the <i>mt-Rnr1</i> mutation impaired mitochondrial function, as indicated by reduced ATP production and decreased oxygen consumption rate (OCR). These findings demonstrate the utility of the enhanced base editors in generating mitochondrial disease models and advancing research in mitochondrial genetics.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"36 3","pages":"102678"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398210/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alterations in mitochondrial base editors enhance targeted editing efficiency for mouse model generation.\",\"authors\":\"Seongho Hong, Sol Pin Kim, Sanghun Kim, Soo Kyung Kang, Sungmo Jung, Yeji Oh, Seung Hee Choi, Su Bin Lee, Hou Cha, Jieun Kim, Jiyoung Bae, Jiyoon Park, Kyoungmi Kim, Chang Geun Choi, Soo-Ji Park, Do Hyun Kim, Lark Kyun Kim, Je Kyung Seong, Hyunji Lee\",\"doi\":\"10.1016/j.omtn.2025.102678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial DNA (mtDNA) base editors are powerful tools for investigating mitochondrial diseases. However, their editing efficiency can vary significantly depending on the target site within the mtDNA. In this study, we developed two improved versions of the mitochondrial adenine base editor (Hifi-sTALED and αnHifi-sTALED) by modifying components other than the TadA8e-V28R deaminase variant. These enhancements significantly increased editing efficiency while preserving minimal off-target effects across the transcriptome. Using these optimized editors, we achieved improved mtDNA editing in mouse embryos and successfully generated <i>mt-Rnr1</i> mutant mice with high heteroplasmic loads. Functional analyses revealed that the <i>mt-Rnr1</i> mutation impaired mitochondrial function, as indicated by reduced ATP production and decreased oxygen consumption rate (OCR). These findings demonstrate the utility of the enhanced base editors in generating mitochondrial disease models and advancing research in mitochondrial genetics.</p>\",\"PeriodicalId\":18821,\"journal\":{\"name\":\"Molecular Therapy. Nucleic Acids\",\"volume\":\"36 3\",\"pages\":\"102678\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398210/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Nucleic Acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtn.2025.102678\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/9 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2025.102678","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

线粒体DNA (mtDNA)碱基编辑器是研究线粒体疾病的有力工具。然而,它们的编辑效率可以根据mtDNA内的目标位点而显著变化。在这项研究中,我们通过修改TadA8e-V28R脱氨酶变体以外的成分,开发了两个改进版本的线粒体腺嘌呤碱基编辑器(Hifi-sTALED和αnHifi-sTALED)。这些增强显著提高了编辑效率,同时在转录组中保留了最小的脱靶效应。利用这些优化的编辑器,我们在小鼠胚胎中实现了改进的mtDNA编辑,并成功地产生了具有高异质性负荷的mt-Rnr1突变小鼠。功能分析显示,mt-Rnr1突变损害了线粒体功能,如ATP产生减少和氧消耗率(OCR)降低所示。这些发现证明了增强型碱基编辑器在生成线粒体疾病模型和推进线粒体遗传学研究中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alterations in mitochondrial base editors enhance targeted editing efficiency for mouse model generation.

Mitochondrial DNA (mtDNA) base editors are powerful tools for investigating mitochondrial diseases. However, their editing efficiency can vary significantly depending on the target site within the mtDNA. In this study, we developed two improved versions of the mitochondrial adenine base editor (Hifi-sTALED and αnHifi-sTALED) by modifying components other than the TadA8e-V28R deaminase variant. These enhancements significantly increased editing efficiency while preserving minimal off-target effects across the transcriptome. Using these optimized editors, we achieved improved mtDNA editing in mouse embryos and successfully generated mt-Rnr1 mutant mice with high heteroplasmic loads. Functional analyses revealed that the mt-Rnr1 mutation impaired mitochondrial function, as indicated by reduced ATP production and decreased oxygen consumption rate (OCR). These findings demonstrate the utility of the enhanced base editors in generating mitochondrial disease models and advancing research in mitochondrial genetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信