{"title":"间歇性缺氧时ADAM17抑制保护认知:TREM2的作用","authors":"Jiahuan Xu, Hongyu Jin, Xiaomeng Li, Zhiping Jiang, Fanqi Meng, Wei Wang, Wen-Yang Li","doi":"10.2147/NSS.S513304","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The triggering receptor expressed on myeloid cells 2 (TREM2) is a new therapeutic target in Alzheimer's disease. However, its role in obstructive sleep apnea (OSA)-related cognitive impairment is still unclear. This study aimed to investigate the effect and regulatory mechanism of TREM2 on cognitive impairment related to OSA.</p><p><strong>Methods: </strong>Since intermittent hypoxia (IH) is the primary pathophysiologic characteristic of OSA, we conducted IH animal and BV2 cell model to investigate the mechanism. <i>Trem2</i> knockdown and <i>Trem2</i> overexpression cells were created by Lentivirus transfection. A disintegrin and metalloprotease 17 (ADAM17) is the primary enzyme for TREM2 shedding, we used TAPI-1 to inhibit its activity. Morris water maze, Nissl staining, real-time PCR, immunofluorescence, Western blotting, fluorometric assay kit, and enzyme-linked immunosorbent assay were used to explore the molecular mechanism.</p><p><strong>Results: </strong>The TREM2 levels were decreased in BV2 cells exposed to IH for 24 hours. IH elevated the levels of IL-1β, TNF-α and CD86 in BV2 cells, as well as the levels of p-Tau in conditioned media-cultured HT-22 cells. Conversely, IH reduced the levels of IL-10 and CD206 in BV2 cells. However, these effects were exacerbated in BV2 cells with <i>Trem2</i> knockdown, whereas they were mitigated in those with <i>Trem2</i> overexpression. Additionally, the ADAM17 activity and soluble TREM2 (sTREM2) levels were increased in BV2 cells subjected to IH. Treatment with TAPI-1, suppressed ADAM17 activity and restored TREM2 expression both in vitro and in vivo. Inhibition of ADAM17 led to a reduction in the expression of CD86, IL-1β, TNF-α and p-Tau levels, while enhancing the expression of CD206, IL10 and cognitive functions.</p><p><strong>Conclusion: </strong>TREM2 played a protective role in IH-induced neuroinflammation and neuronal injury by promoting microglia M2 polarization. IH caused excessive activation of ADAM17 and resulted in augmented degradation of TREM2. Restoring TREM2 expression by inhibiting ADAM17 indicates a potentially promising therapeutic strategy for cognitive impairment in OSA.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"17 ","pages":"1915-1928"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396233/pdf/","citationCount":"0","resultStr":"{\"title\":\"ADAM17 Inhibition Protects Cognition in Intermittent Hypoxia: The Role of TREM2.\",\"authors\":\"Jiahuan Xu, Hongyu Jin, Xiaomeng Li, Zhiping Jiang, Fanqi Meng, Wei Wang, Wen-Yang Li\",\"doi\":\"10.2147/NSS.S513304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The triggering receptor expressed on myeloid cells 2 (TREM2) is a new therapeutic target in Alzheimer's disease. However, its role in obstructive sleep apnea (OSA)-related cognitive impairment is still unclear. This study aimed to investigate the effect and regulatory mechanism of TREM2 on cognitive impairment related to OSA.</p><p><strong>Methods: </strong>Since intermittent hypoxia (IH) is the primary pathophysiologic characteristic of OSA, we conducted IH animal and BV2 cell model to investigate the mechanism. <i>Trem2</i> knockdown and <i>Trem2</i> overexpression cells were created by Lentivirus transfection. A disintegrin and metalloprotease 17 (ADAM17) is the primary enzyme for TREM2 shedding, we used TAPI-1 to inhibit its activity. Morris water maze, Nissl staining, real-time PCR, immunofluorescence, Western blotting, fluorometric assay kit, and enzyme-linked immunosorbent assay were used to explore the molecular mechanism.</p><p><strong>Results: </strong>The TREM2 levels were decreased in BV2 cells exposed to IH for 24 hours. IH elevated the levels of IL-1β, TNF-α and CD86 in BV2 cells, as well as the levels of p-Tau in conditioned media-cultured HT-22 cells. Conversely, IH reduced the levels of IL-10 and CD206 in BV2 cells. However, these effects were exacerbated in BV2 cells with <i>Trem2</i> knockdown, whereas they were mitigated in those with <i>Trem2</i> overexpression. Additionally, the ADAM17 activity and soluble TREM2 (sTREM2) levels were increased in BV2 cells subjected to IH. Treatment with TAPI-1, suppressed ADAM17 activity and restored TREM2 expression both in vitro and in vivo. Inhibition of ADAM17 led to a reduction in the expression of CD86, IL-1β, TNF-α and p-Tau levels, while enhancing the expression of CD206, IL10 and cognitive functions.</p><p><strong>Conclusion: </strong>TREM2 played a protective role in IH-induced neuroinflammation and neuronal injury by promoting microglia M2 polarization. IH caused excessive activation of ADAM17 and resulted in augmented degradation of TREM2. Restoring TREM2 expression by inhibiting ADAM17 indicates a potentially promising therapeutic strategy for cognitive impairment in OSA.</p>\",\"PeriodicalId\":18896,\"journal\":{\"name\":\"Nature and Science of Sleep\",\"volume\":\"17 \",\"pages\":\"1915-1928\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396233/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature and Science of Sleep\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/NSS.S513304\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S513304","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
ADAM17 Inhibition Protects Cognition in Intermittent Hypoxia: The Role of TREM2.
Purpose: The triggering receptor expressed on myeloid cells 2 (TREM2) is a new therapeutic target in Alzheimer's disease. However, its role in obstructive sleep apnea (OSA)-related cognitive impairment is still unclear. This study aimed to investigate the effect and regulatory mechanism of TREM2 on cognitive impairment related to OSA.
Methods: Since intermittent hypoxia (IH) is the primary pathophysiologic characteristic of OSA, we conducted IH animal and BV2 cell model to investigate the mechanism. Trem2 knockdown and Trem2 overexpression cells were created by Lentivirus transfection. A disintegrin and metalloprotease 17 (ADAM17) is the primary enzyme for TREM2 shedding, we used TAPI-1 to inhibit its activity. Morris water maze, Nissl staining, real-time PCR, immunofluorescence, Western blotting, fluorometric assay kit, and enzyme-linked immunosorbent assay were used to explore the molecular mechanism.
Results: The TREM2 levels were decreased in BV2 cells exposed to IH for 24 hours. IH elevated the levels of IL-1β, TNF-α and CD86 in BV2 cells, as well as the levels of p-Tau in conditioned media-cultured HT-22 cells. Conversely, IH reduced the levels of IL-10 and CD206 in BV2 cells. However, these effects were exacerbated in BV2 cells with Trem2 knockdown, whereas they were mitigated in those with Trem2 overexpression. Additionally, the ADAM17 activity and soluble TREM2 (sTREM2) levels were increased in BV2 cells subjected to IH. Treatment with TAPI-1, suppressed ADAM17 activity and restored TREM2 expression both in vitro and in vivo. Inhibition of ADAM17 led to a reduction in the expression of CD86, IL-1β, TNF-α and p-Tau levels, while enhancing the expression of CD206, IL10 and cognitive functions.
Conclusion: TREM2 played a protective role in IH-induced neuroinflammation and neuronal injury by promoting microglia M2 polarization. IH caused excessive activation of ADAM17 and resulted in augmented degradation of TREM2. Restoring TREM2 expression by inhibiting ADAM17 indicates a potentially promising therapeutic strategy for cognitive impairment in OSA.
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.