泛癌症单细胞景观的时空分析揭示了与肿瘤免疫相关的广泛的纤维化生态型。

IF 28.5 1区 医学 Q1 ONCOLOGY
Ya Han, Lele Zhang, Dongqing Sun, Guangxu Cao, Yuting Wang, Jiali Yue, Junjie Hu, Zhonghua Dong, Fang Li, Taiwen Li, Peng Zhang, Qiu Wu, Chenfei Wang
{"title":"泛癌症单细胞景观的时空分析揭示了与肿瘤免疫相关的广泛的纤维化生态型。","authors":"Ya Han, Lele Zhang, Dongqing Sun, Guangxu Cao, Yuting Wang, Jiali Yue, Junjie Hu, Zhonghua Dong, Fang Li, Taiwen Li, Peng Zhang, Qiu Wu, Chenfei Wang","doi":"10.1038/s43018-025-01039-5","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment evolves during tumor development and influences the cells in the microenvironment to orchestrate a supportive environment for tumor growth. Here we collected 4,483,367 cells across 36 cancer types and constructed a pan-cancer resource named TabulaTIME. Our integrated analyses reveal that CTHRC1 is a hallmark of extracellular matrix-related cancer-associated fibroblasts (CAFs) that are enriched in different cancer types. Spatiotemporal analyses further indicated that CTHRC1<sup>+</sup> CAFs are located at the leading edge between the malignant and normal regions, potentially preventing immune infiltration. Moreover, we identified that SLPI<sup>+</sup> macrophages exhibit profibrotic-associated phenotypes and colocalize with CTHRC1<sup>+</sup> CAFs to form unique spatial ecotypes. Finally, we demonstrated that TabulaTIME can be used to analyze tumor ecotype composition and can serve as a reference for cell-type annotation. This work establishes a comprehensive single-cell landscape of the heterogenous TME and offers a potential therapeutic strategy for targeting the profibrotic ecotype in cancer treatment.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":28.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal analyses of the pan-cancer single-cell landscape reveal widespread profibrotic ecotypes associated with tumor immunity.\",\"authors\":\"Ya Han, Lele Zhang, Dongqing Sun, Guangxu Cao, Yuting Wang, Jiali Yue, Junjie Hu, Zhonghua Dong, Fang Li, Taiwen Li, Peng Zhang, Qiu Wu, Chenfei Wang\",\"doi\":\"10.1038/s43018-025-01039-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The tumor microenvironment evolves during tumor development and influences the cells in the microenvironment to orchestrate a supportive environment for tumor growth. Here we collected 4,483,367 cells across 36 cancer types and constructed a pan-cancer resource named TabulaTIME. Our integrated analyses reveal that CTHRC1 is a hallmark of extracellular matrix-related cancer-associated fibroblasts (CAFs) that are enriched in different cancer types. Spatiotemporal analyses further indicated that CTHRC1<sup>+</sup> CAFs are located at the leading edge between the malignant and normal regions, potentially preventing immune infiltration. Moreover, we identified that SLPI<sup>+</sup> macrophages exhibit profibrotic-associated phenotypes and colocalize with CTHRC1<sup>+</sup> CAFs to form unique spatial ecotypes. Finally, we demonstrated that TabulaTIME can be used to analyze tumor ecotype composition and can serve as a reference for cell-type annotation. This work establishes a comprehensive single-cell landscape of the heterogenous TME and offers a potential therapeutic strategy for targeting the profibrotic ecotype in cancer treatment.</p>\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":28.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s43018-025-01039-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-01039-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤微环境在肿瘤发育过程中不断进化,并影响微环境中的细胞协调肿瘤生长的支持环境。在这里,我们收集了36种癌症类型的4,483,367个细胞,并构建了一个名为TabulaTIME的泛癌症资源。我们的综合分析显示,CTHRC1是细胞外基质相关癌症相关成纤维细胞(CAFs)的标志,在不同的癌症类型中富集。时空分析进一步表明,CTHRC1+ CAFs位于恶性和正常区域之间的前沿,可能阻止免疫浸润。此外,我们发现SLPI+巨噬细胞表现出profibrtic相关表型,并与CTHRC1+ CAFs共定位,形成独特的空间生态型。最后,我们证明了TabulaTIME可用于分析肿瘤生态型组成,并可作为细胞类型注释的参考。这项工作建立了异质性TME的全面单细胞景观,并为靶向促纤维化生态型的癌症治疗提供了潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal analyses of the pan-cancer single-cell landscape reveal widespread profibrotic ecotypes associated with tumor immunity.

The tumor microenvironment evolves during tumor development and influences the cells in the microenvironment to orchestrate a supportive environment for tumor growth. Here we collected 4,483,367 cells across 36 cancer types and constructed a pan-cancer resource named TabulaTIME. Our integrated analyses reveal that CTHRC1 is a hallmark of extracellular matrix-related cancer-associated fibroblasts (CAFs) that are enriched in different cancer types. Spatiotemporal analyses further indicated that CTHRC1+ CAFs are located at the leading edge between the malignant and normal regions, potentially preventing immune infiltration. Moreover, we identified that SLPI+ macrophages exhibit profibrotic-associated phenotypes and colocalize with CTHRC1+ CAFs to form unique spatial ecotypes. Finally, we demonstrated that TabulaTIME can be used to analyze tumor ecotype composition and can serve as a reference for cell-type annotation. This work establishes a comprehensive single-cell landscape of the heterogenous TME and offers a potential therapeutic strategy for targeting the profibrotic ecotype in cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature cancer
Nature cancer Medicine-Oncology
CiteScore
31.10
自引率
1.80%
发文量
129
期刊介绍: Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates. Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale. In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信