Lizhi Shao, Chao Liang, Ye Yan, Haibin Zhu, Xiaoming Jiang, Meiling Bao, Pan Zang, Xiazi Huang, Hongyu Zhou, Pei Nie, Liang Wang, Jie Li, Shudong Zhang, Shancheng Ren
{"title":"前列腺癌无创诊断和分级的mri病理基础模型。","authors":"Lizhi Shao, Chao Liang, Ye Yan, Haibin Zhu, Xiaoming Jiang, Meiling Bao, Pan Zang, Xiazi Huang, Hongyu Zhou, Pei Nie, Liang Wang, Jie Li, Shudong Zhang, Shancheng Ren","doi":"10.1038/s43018-025-01041-x","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is a leading health concern for men, yet current clinical assessments of tumor aggressiveness rely on invasive procedures that often lead to inconsistencies. There remains a critical need for accurate, noninvasive diagnosis and grading methods. Here we developed a foundation model trained on multiparametric magnetic resonance imaging (MRI) and paired pathology data for noninvasive diagnosis and grading of prostate cancer. Our model, MRI-based Predicted Transformer for Prostate Cancer (MRI-PTPCa), was trained under contrastive learning on nearly 1.3 million image-pathology pairs from over 5,500 patients in discovery, modeling, external and prospective cohorts. During real-world testing, prediction of MRI-PTPCa demonstrated consistency with pathology and superior performance (area under the curve above 0.978; grading accuracy 89.1%) compared with clinical measures and other prediction models. This work introduces a scalable, noninvasive approach to prostate cancer diagnosis and grading, offering a robust tool to support clinical decision-making while reducing reliance on biopsies.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":28.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An MRI-pathology foundation model for noninvasive diagnosis and grading of prostate cancer.\",\"authors\":\"Lizhi Shao, Chao Liang, Ye Yan, Haibin Zhu, Xiaoming Jiang, Meiling Bao, Pan Zang, Xiazi Huang, Hongyu Zhou, Pei Nie, Liang Wang, Jie Li, Shudong Zhang, Shancheng Ren\",\"doi\":\"10.1038/s43018-025-01041-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer is a leading health concern for men, yet current clinical assessments of tumor aggressiveness rely on invasive procedures that often lead to inconsistencies. There remains a critical need for accurate, noninvasive diagnosis and grading methods. Here we developed a foundation model trained on multiparametric magnetic resonance imaging (MRI) and paired pathology data for noninvasive diagnosis and grading of prostate cancer. Our model, MRI-based Predicted Transformer for Prostate Cancer (MRI-PTPCa), was trained under contrastive learning on nearly 1.3 million image-pathology pairs from over 5,500 patients in discovery, modeling, external and prospective cohorts. During real-world testing, prediction of MRI-PTPCa demonstrated consistency with pathology and superior performance (area under the curve above 0.978; grading accuracy 89.1%) compared with clinical measures and other prediction models. This work introduces a scalable, noninvasive approach to prostate cancer diagnosis and grading, offering a robust tool to support clinical decision-making while reducing reliance on biopsies.</p>\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":28.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s43018-025-01041-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-01041-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
An MRI-pathology foundation model for noninvasive diagnosis and grading of prostate cancer.
Prostate cancer is a leading health concern for men, yet current clinical assessments of tumor aggressiveness rely on invasive procedures that often lead to inconsistencies. There remains a critical need for accurate, noninvasive diagnosis and grading methods. Here we developed a foundation model trained on multiparametric magnetic resonance imaging (MRI) and paired pathology data for noninvasive diagnosis and grading of prostate cancer. Our model, MRI-based Predicted Transformer for Prostate Cancer (MRI-PTPCa), was trained under contrastive learning on nearly 1.3 million image-pathology pairs from over 5,500 patients in discovery, modeling, external and prospective cohorts. During real-world testing, prediction of MRI-PTPCa demonstrated consistency with pathology and superior performance (area under the curve above 0.978; grading accuracy 89.1%) compared with clinical measures and other prediction models. This work introduces a scalable, noninvasive approach to prostate cancer diagnosis and grading, offering a robust tool to support clinical decision-making while reducing reliance on biopsies.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.