Ran He, Pingjun Ying, Shuo Chen, Zhifeng Ren, Kornelius Nielsch
{"title":"低温应用(低于300°C)的镁基热电材料和模块。","authors":"Ran He, Pingjun Ying, Shuo Chen, Zhifeng Ren, Kornelius Nielsch","doi":"10.1557/s43577-025-00939-2","DOIUrl":null,"url":null,"abstract":"<p><p>Thermoelectric technology has emerged as a promising solution for direct heat-to-electricity conversion and solid-state cooling, offering great energy efficiency and environmental impact advantages. However, conventional systems predominantly rely on tellurium-based materials, which are limited by scarcity, high cost, and environmental concerns. This article focuses on tellurium-free thermoelectric modules, with an emphasis on magnesium-based alternatives, including <i>p</i>-type MgAgSb and <i>n</i>-type Mg<sub>3</sub>(Sb, Bi)<sub>2</sub>, which demonstrate competitive performance at operating temperatures below 300℃. By exploring recent advances in material synthesis, module fabrication, and interface engineering, we highlight the potential of these sustainable materials to achieve high thermoelectric figures of merit while reducing environmental impact. Additionally, the article assesses the performance metrics and durability of these modules and discusses emerging applications in energy harvesting, medical devices, consumer electronics, and more. Finally, we outline future research directions aimed at overcoming remaining challenges, including long-term stability and scalable manufacturing, to pave the way for the widespread adoption of tellurium-free thermoelectric technology.</p><p><strong>Graphical abstract: </strong>Potential application scenarios of Mg-based Te-free thermoelectric technology.</p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"50 8","pages":"956-965"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnesium-based thermoelectric materials and modules for low-temperature applications (below 300°C).\",\"authors\":\"Ran He, Pingjun Ying, Shuo Chen, Zhifeng Ren, Kornelius Nielsch\",\"doi\":\"10.1557/s43577-025-00939-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermoelectric technology has emerged as a promising solution for direct heat-to-electricity conversion and solid-state cooling, offering great energy efficiency and environmental impact advantages. However, conventional systems predominantly rely on tellurium-based materials, which are limited by scarcity, high cost, and environmental concerns. This article focuses on tellurium-free thermoelectric modules, with an emphasis on magnesium-based alternatives, including <i>p</i>-type MgAgSb and <i>n</i>-type Mg<sub>3</sub>(Sb, Bi)<sub>2</sub>, which demonstrate competitive performance at operating temperatures below 300℃. By exploring recent advances in material synthesis, module fabrication, and interface engineering, we highlight the potential of these sustainable materials to achieve high thermoelectric figures of merit while reducing environmental impact. Additionally, the article assesses the performance metrics and durability of these modules and discusses emerging applications in energy harvesting, medical devices, consumer electronics, and more. Finally, we outline future research directions aimed at overcoming remaining challenges, including long-term stability and scalable manufacturing, to pave the way for the widespread adoption of tellurium-free thermoelectric technology.</p><p><strong>Graphical abstract: </strong>Potential application scenarios of Mg-based Te-free thermoelectric technology.</p>\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":\"50 8\",\"pages\":\"956-965\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-025-00939-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-025-00939-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnesium-based thermoelectric materials and modules for low-temperature applications (below 300°C).
Thermoelectric technology has emerged as a promising solution for direct heat-to-electricity conversion and solid-state cooling, offering great energy efficiency and environmental impact advantages. However, conventional systems predominantly rely on tellurium-based materials, which are limited by scarcity, high cost, and environmental concerns. This article focuses on tellurium-free thermoelectric modules, with an emphasis on magnesium-based alternatives, including p-type MgAgSb and n-type Mg3(Sb, Bi)2, which demonstrate competitive performance at operating temperatures below 300℃. By exploring recent advances in material synthesis, module fabrication, and interface engineering, we highlight the potential of these sustainable materials to achieve high thermoelectric figures of merit while reducing environmental impact. Additionally, the article assesses the performance metrics and durability of these modules and discusses emerging applications in energy harvesting, medical devices, consumer electronics, and more. Finally, we outline future research directions aimed at overcoming remaining challenges, including long-term stability and scalable manufacturing, to pave the way for the widespread adoption of tellurium-free thermoelectric technology.
Graphical abstract: Potential application scenarios of Mg-based Te-free thermoelectric technology.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.