{"title":"CRIF抵消致癌Ras并调节异染色质。","authors":"Su Jun Lim, Jinghong Li, Willis X Li","doi":"10.1007/s00438-025-02293-z","DOIUrl":null,"url":null,"abstract":"<p><p>Oncogenic Ras mutations are prevalent in human cancers, yet the mechanisms by which Ras promotes tumorigenesis remain incompletely understood. In Drosophila, oncogenic Ras (Ras<sup>V12</sup>) induces tissue overgrowth and metastasis, but the cellular restraints it must overcome are unclear. We have identified Drosophila CRIF, the homolog of mammalian CR6-interacting factor 1 (CRIF1), as a modifier of Ras<sup>V12</sup>-induced lethality and Ras<sup>V12</sup>-induced overgrowth and cell proliferation. Knockdown of CRIF exacerbated Ras<sup>V12</sup> phenotypes, while CRIF overexpression ameliorated them. Further, we found that CRIF was also required for heterochromatin formation, as loss of CRIF suppressed position-effect variegation (PEV) and reduced the levels of Heterochromatin Proteins 1 (HP1) and Histone H3 Lysine 9 trimethylation (H3K9me3). CRIF physically interacted with HP1, suggesting a role in recruiting HP1 to heterochromatin. Notably, CRIF did not regulate HP1 transcription or total protein levels but influenced HP1 localization. Our findings demonstrate that CRIF functions as a tumor suppressor by negatively regulating cell proliferation and maintaining heterochromatin stability. CRIF's interaction with HP1 and its role in heterochromatin regulation suggest a novel mechanism linking heterochromatin to tumor suppression in Ras-driven cancers. These results highlight CRIF as a potential therapeutic target and provide new insights into the interplay between chromatin regulation and oncogenic signaling.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"84"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRIF counteracts oncogenic Ras and regulates heterochromatin.\",\"authors\":\"Su Jun Lim, Jinghong Li, Willis X Li\",\"doi\":\"10.1007/s00438-025-02293-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oncogenic Ras mutations are prevalent in human cancers, yet the mechanisms by which Ras promotes tumorigenesis remain incompletely understood. In Drosophila, oncogenic Ras (Ras<sup>V12</sup>) induces tissue overgrowth and metastasis, but the cellular restraints it must overcome are unclear. We have identified Drosophila CRIF, the homolog of mammalian CR6-interacting factor 1 (CRIF1), as a modifier of Ras<sup>V12</sup>-induced lethality and Ras<sup>V12</sup>-induced overgrowth and cell proliferation. Knockdown of CRIF exacerbated Ras<sup>V12</sup> phenotypes, while CRIF overexpression ameliorated them. Further, we found that CRIF was also required for heterochromatin formation, as loss of CRIF suppressed position-effect variegation (PEV) and reduced the levels of Heterochromatin Proteins 1 (HP1) and Histone H3 Lysine 9 trimethylation (H3K9me3). CRIF physically interacted with HP1, suggesting a role in recruiting HP1 to heterochromatin. Notably, CRIF did not regulate HP1 transcription or total protein levels but influenced HP1 localization. Our findings demonstrate that CRIF functions as a tumor suppressor by negatively regulating cell proliferation and maintaining heterochromatin stability. CRIF's interaction with HP1 and its role in heterochromatin regulation suggest a novel mechanism linking heterochromatin to tumor suppression in Ras-driven cancers. These results highlight CRIF as a potential therapeutic target and provide new insights into the interplay between chromatin regulation and oncogenic signaling.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":\"300 1\",\"pages\":\"84\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-025-02293-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02293-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CRIF counteracts oncogenic Ras and regulates heterochromatin.
Oncogenic Ras mutations are prevalent in human cancers, yet the mechanisms by which Ras promotes tumorigenesis remain incompletely understood. In Drosophila, oncogenic Ras (RasV12) induces tissue overgrowth and metastasis, but the cellular restraints it must overcome are unclear. We have identified Drosophila CRIF, the homolog of mammalian CR6-interacting factor 1 (CRIF1), as a modifier of RasV12-induced lethality and RasV12-induced overgrowth and cell proliferation. Knockdown of CRIF exacerbated RasV12 phenotypes, while CRIF overexpression ameliorated them. Further, we found that CRIF was also required for heterochromatin formation, as loss of CRIF suppressed position-effect variegation (PEV) and reduced the levels of Heterochromatin Proteins 1 (HP1) and Histone H3 Lysine 9 trimethylation (H3K9me3). CRIF physically interacted with HP1, suggesting a role in recruiting HP1 to heterochromatin. Notably, CRIF did not regulate HP1 transcription or total protein levels but influenced HP1 localization. Our findings demonstrate that CRIF functions as a tumor suppressor by negatively regulating cell proliferation and maintaining heterochromatin stability. CRIF's interaction with HP1 and its role in heterochromatin regulation suggest a novel mechanism linking heterochromatin to tumor suppression in Ras-driven cancers. These results highlight CRIF as a potential therapeutic target and provide new insights into the interplay between chromatin regulation and oncogenic signaling.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.