Leon S Besseling, Anouk Bomers, Jord J Warmink, Suzanne J M H Hulscher
{"title":"一个量化概率堤口流出量的概念模型。","authors":"Leon S Besseling, Anouk Bomers, Jord J Warmink, Suzanne J M H Hulscher","doi":"10.1007/s11069-025-07500-z","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrodynamic models can provide accurate information on the consequences of a dike breach, but their long computation times hinder the analysis of uncertainties and scenarios during a time-sensitive emergency situation. Conceptual models use simplified rules and relations, and allow for much faster computation while preserving reasonable accuracy. In this study, we develop a conceptual model with breach growth that estimates the dike breach outflow for varying river discharge events and for varying dike breach locations along the Rhine's bifurcations in the Netherlands and Germany. The results show that the model is able to provide a good estimate of the breach outflow, regardless of river discharge waves shape and peak discharge. The model achieves an approximate error of 10 to 15% compared to an operational hydrodynamic model of the study area. Its computation speed allows the analysis of thousands of scenarios per minute, enabling decision makers to probabilistically analyse breach outflow hydrographs at sampled critical water levels for an incoming extreme river discharge wave. We conclude that this conceptual model can provide realistic first estimates of breach outflow for large-scale dike breaches, while requiring little input data and computational time.</p>","PeriodicalId":18792,"journal":{"name":"Natural Hazards","volume":"121 15","pages":"17935-17963"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378155/pdf/","citationCount":"0","resultStr":"{\"title\":\"A conceptual model to quantify probabilistic dike breach outflow.\",\"authors\":\"Leon S Besseling, Anouk Bomers, Jord J Warmink, Suzanne J M H Hulscher\",\"doi\":\"10.1007/s11069-025-07500-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrodynamic models can provide accurate information on the consequences of a dike breach, but their long computation times hinder the analysis of uncertainties and scenarios during a time-sensitive emergency situation. Conceptual models use simplified rules and relations, and allow for much faster computation while preserving reasonable accuracy. In this study, we develop a conceptual model with breach growth that estimates the dike breach outflow for varying river discharge events and for varying dike breach locations along the Rhine's bifurcations in the Netherlands and Germany. The results show that the model is able to provide a good estimate of the breach outflow, regardless of river discharge waves shape and peak discharge. The model achieves an approximate error of 10 to 15% compared to an operational hydrodynamic model of the study area. Its computation speed allows the analysis of thousands of scenarios per minute, enabling decision makers to probabilistically analyse breach outflow hydrographs at sampled critical water levels for an incoming extreme river discharge wave. We conclude that this conceptual model can provide realistic first estimates of breach outflow for large-scale dike breaches, while requiring little input data and computational time.</p>\",\"PeriodicalId\":18792,\"journal\":{\"name\":\"Natural Hazards\",\"volume\":\"121 15\",\"pages\":\"17935-17963\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Hazards\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11069-025-07500-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11069-025-07500-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A conceptual model to quantify probabilistic dike breach outflow.
Hydrodynamic models can provide accurate information on the consequences of a dike breach, but their long computation times hinder the analysis of uncertainties and scenarios during a time-sensitive emergency situation. Conceptual models use simplified rules and relations, and allow for much faster computation while preserving reasonable accuracy. In this study, we develop a conceptual model with breach growth that estimates the dike breach outflow for varying river discharge events and for varying dike breach locations along the Rhine's bifurcations in the Netherlands and Germany. The results show that the model is able to provide a good estimate of the breach outflow, regardless of river discharge waves shape and peak discharge. The model achieves an approximate error of 10 to 15% compared to an operational hydrodynamic model of the study area. Its computation speed allows the analysis of thousands of scenarios per minute, enabling decision makers to probabilistically analyse breach outflow hydrographs at sampled critical water levels for an incoming extreme river discharge wave. We conclude that this conceptual model can provide realistic first estimates of breach outflow for large-scale dike breaches, while requiring little input data and computational time.
期刊介绍:
Natural Hazards is devoted to original research work on all aspects of natural hazards, the forecasting of catastrophic events, their risk management, and the nature of precursors of natural and/or technological hazards.
Although the origin of hazards can be different sources and systems (atmospheric, hydrologic, oceanographic, volcanologic, seismic, neotectonic), the environmental impacts are equally catastrophic. This circumstance warrants a tight interaction between the different scientific and operational disciplines, which should enhance the mitigation of hazards.
Hazards of interest to the journal are included in the following sections: general, atmospheric, climatological, oceanographic, storm surges, tsunamis, floods, snow, avalanches, landslides, erosion, earthquakes, volcanoes, man-made, technological, and risk assessment. The interactions between these hazards and society are also addressed in the journal and include risk governance, disaster response and preventive actions such as spatial planning and remedial measures.