MitoQ通过氧化应激和炎症调节减轻马拉硫磷诱导的肝肾毒性。

IF 3.5 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-11-01 Epub Date: 2025-08-24 DOI:10.3892/mmr.2025.13661
Saed A Althobaiti
{"title":"MitoQ通过氧化应激和炎症调节减轻马拉硫磷诱导的肝肾毒性。","authors":"Saed A Althobaiti","doi":"10.3892/mmr.2025.13661","DOIUrl":null,"url":null,"abstract":"<p><p>Malathion, a commonly used organophosphate pesticide, induces severe hepatorenal toxicity, mitochondrial dysfunction and inflammatory responses primarily through oxidative stress and apoptosis. The present study investigated the protective effects of mitoquinol (MitoQ), a mitochondria‑targeted antioxidant, against malathion‑induced toxicity in male Wistar albino rats. A total of 50 rats were divided into the following five groups: i) Control; ii) malathion‑only; iii) malathion + MitoQ; iv) MitoQ‑only; and v) vehicle. Malathion exposure significantly elevated the levels of aspartate aminotransferase, alkaline phosphatase, creatinine, urea and uric acid and decreased total protein, albumin and globulin levels. At the mitochondrial level, malathion reduced antioxidant enzyme activity (superoxide dismutase, glutathione peroxidase and glutathione) and ATP production while increasing reactive oxygen species, leading to oxidative damage. Furthermore, malathion induced upregulation of pro‑apoptotic markers such as Bax, and downregulation of the anti‑apoptotic marker, Bcl‑2. In addition, malathion increased TNF‑α, NF‑κB, Toll‑like receptor (TLR) 2 and TLR4 expression, and malathion toxicity induced severe hepatorenal damage, including vascular congestion, inflammatory infiltration and tubular degeneration. MitoQ co‑administration revealed a trend towards mitigating altered hepatorenal markers, inflammatory markers and regulated apoptotic/antiapoptotic gene markers, with partial restoration in mitochondrial function and histopathological changes. In parallel, MitoQ normalized cellular changes induced by malathion in the liver and kidneys. In conclusion, malathion toxicity in the liver and kidneys is mediated by mitochondrial oxidative stress, apoptosis and inflammation. MitoQ exerts protective effects by restoring mitochondrial homeostasis, reducing inflammatory signaling and mitigating tissue damage. Future research should explore longer treatment durations and potential synergistic effects with other antioxidants to optimize protection against pesticide‑induced toxicity.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"32 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404019/pdf/","citationCount":"0","resultStr":"{\"title\":\"MitoQ alleviates malathion‑induced hepatorenal toxicity via oxidative stress and inflammation modulation.\",\"authors\":\"Saed A Althobaiti\",\"doi\":\"10.3892/mmr.2025.13661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malathion, a commonly used organophosphate pesticide, induces severe hepatorenal toxicity, mitochondrial dysfunction and inflammatory responses primarily through oxidative stress and apoptosis. The present study investigated the protective effects of mitoquinol (MitoQ), a mitochondria‑targeted antioxidant, against malathion‑induced toxicity in male Wistar albino rats. A total of 50 rats were divided into the following five groups: i) Control; ii) malathion‑only; iii) malathion + MitoQ; iv) MitoQ‑only; and v) vehicle. Malathion exposure significantly elevated the levels of aspartate aminotransferase, alkaline phosphatase, creatinine, urea and uric acid and decreased total protein, albumin and globulin levels. At the mitochondrial level, malathion reduced antioxidant enzyme activity (superoxide dismutase, glutathione peroxidase and glutathione) and ATP production while increasing reactive oxygen species, leading to oxidative damage. Furthermore, malathion induced upregulation of pro‑apoptotic markers such as Bax, and downregulation of the anti‑apoptotic marker, Bcl‑2. In addition, malathion increased TNF‑α, NF‑κB, Toll‑like receptor (TLR) 2 and TLR4 expression, and malathion toxicity induced severe hepatorenal damage, including vascular congestion, inflammatory infiltration and tubular degeneration. MitoQ co‑administration revealed a trend towards mitigating altered hepatorenal markers, inflammatory markers and regulated apoptotic/antiapoptotic gene markers, with partial restoration in mitochondrial function and histopathological changes. In parallel, MitoQ normalized cellular changes induced by malathion in the liver and kidneys. In conclusion, malathion toxicity in the liver and kidneys is mediated by mitochondrial oxidative stress, apoptosis and inflammation. MitoQ exerts protective effects by restoring mitochondrial homeostasis, reducing inflammatory signaling and mitigating tissue damage. Future research should explore longer treatment durations and potential synergistic effects with other antioxidants to optimize protection against pesticide‑induced toxicity.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2025.13661\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13661","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

马拉硫磷是一种常用的有机磷农药,主要通过氧化应激和细胞凋亡引起严重的肝肾毒性、线粒体功能障碍和炎症反应。本研究研究了线粒体靶向抗氧化剂mitoquinol (MitoQ)对马拉硫磷诱导的雄性Wistar白化大鼠毒性的保护作用。50只大鼠随机分为5组:i)对照组;(二)马拉松-;iii)马拉硫磷+ MitoQ;(四)MitoQ -;v)车辆。马拉硫磷暴露显著提高了天冬氨酸转氨酶、碱性磷酸酶、肌酐、尿素和尿酸水平,降低了总蛋白、白蛋白和球蛋白水平。在线粒体水平,马拉硫磷降低抗氧化酶活性(超氧化物歧化酶、谷胱甘肽过氧化物酶和谷胱甘肽)和ATP的产生,同时增加活性氧,导致氧化损伤。此外,马拉硫磷诱导Bax等促凋亡标志物上调,Bcl - 2等抗凋亡标志物下调。此外,马拉硫磷增加TNF - α、NF - κB、Toll样受体(TLR) 2和TLR4的表达,马拉硫磷毒性引起严重的肝肾损害,包括血管充血、炎症浸润和小管变性。MitoQ共给药显示出减轻肝肾标志物、炎症标志物和调节的凋亡/抗凋亡基因标志物改变的趋势,线粒体功能和组织病理学改变部分恢复。同时,MitoQ使马拉硫磷在肝脏和肾脏引起的细胞变化正常化。综上所述,马拉硫磷对肝脏和肾脏的毒性是由线粒体氧化应激、细胞凋亡和炎症介导的。MitoQ通过恢复线粒体稳态、减少炎症信号和减轻组织损伤发挥保护作用。未来的研究应探索更长的治疗时间和与其他抗氧化剂的潜在协同作用,以优化对农药诱导毒性的保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MitoQ alleviates malathion‑induced hepatorenal toxicity via oxidative stress and inflammation modulation.

Malathion, a commonly used organophosphate pesticide, induces severe hepatorenal toxicity, mitochondrial dysfunction and inflammatory responses primarily through oxidative stress and apoptosis. The present study investigated the protective effects of mitoquinol (MitoQ), a mitochondria‑targeted antioxidant, against malathion‑induced toxicity in male Wistar albino rats. A total of 50 rats were divided into the following five groups: i) Control; ii) malathion‑only; iii) malathion + MitoQ; iv) MitoQ‑only; and v) vehicle. Malathion exposure significantly elevated the levels of aspartate aminotransferase, alkaline phosphatase, creatinine, urea and uric acid and decreased total protein, albumin and globulin levels. At the mitochondrial level, malathion reduced antioxidant enzyme activity (superoxide dismutase, glutathione peroxidase and glutathione) and ATP production while increasing reactive oxygen species, leading to oxidative damage. Furthermore, malathion induced upregulation of pro‑apoptotic markers such as Bax, and downregulation of the anti‑apoptotic marker, Bcl‑2. In addition, malathion increased TNF‑α, NF‑κB, Toll‑like receptor (TLR) 2 and TLR4 expression, and malathion toxicity induced severe hepatorenal damage, including vascular congestion, inflammatory infiltration and tubular degeneration. MitoQ co‑administration revealed a trend towards mitigating altered hepatorenal markers, inflammatory markers and regulated apoptotic/antiapoptotic gene markers, with partial restoration in mitochondrial function and histopathological changes. In parallel, MitoQ normalized cellular changes induced by malathion in the liver and kidneys. In conclusion, malathion toxicity in the liver and kidneys is mediated by mitochondrial oxidative stress, apoptosis and inflammation. MitoQ exerts protective effects by restoring mitochondrial homeostasis, reducing inflammatory signaling and mitigating tissue damage. Future research should explore longer treatment durations and potential synergistic effects with other antioxidants to optimize protection against pesticide‑induced toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信