Kyle Scheller, Xin Zhou, Kun Li, Lan Jiang, Rodrigo Ochoa, Pilar Cossio, Lizi Wu, Juan Guan
{"title":"三聚体结构域干扰肽抑制EML4-ALK凝聚形成,融合依赖的信号传导和细胞生长。","authors":"Kyle Scheller, Xin Zhou, Kun Li, Lan Jiang, Rodrigo Ochoa, Pilar Cossio, Lizi Wu, Juan Guan","doi":"10.1091/mbc.E25-03-0113","DOIUrl":null,"url":null,"abstract":"<p><p>Biomolecular condensates are micrometer-scale subcellular structures assembled through protein phase separation in living cells. Recent research shows that they are critical to normal biological processes and their misregulation may contribute to disease. A prominent example is the cancer-causing EML4-ALK fusion protein, which spontaneously forms biomolecular condensates that significantly enhance receptor tyrosine kinase (RTK) signaling within the condensate microenvironment. In this work, we show that a trimerization domain (TD) in EML4-ALK is necessary for condensate formation. By designing a peptide targeting the TD, we disrupted EML4-ALK self-assembly, leading to the dissolution of pre-existing EML4-ALK condensates in patient lung tumor-derived cells. Notably, this disruption significantly reduced EML4-ALK-dependent signaling and cell proliferation. Our findings demonstrate that interfering with a specific protein-protein interaction can disrupt oncogenic biomolecular condensates and attenuate their associated signaling. These results highlight the potential of targeting condensate assembly as a strategy to modulate oncogenic signaling.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br25"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483323/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trimerization domain-interfering peptide inhibits EML4-ALK condensate formation, fusion-dependent signaling, and cell growth.\",\"authors\":\"Kyle Scheller, Xin Zhou, Kun Li, Lan Jiang, Rodrigo Ochoa, Pilar Cossio, Lizi Wu, Juan Guan\",\"doi\":\"10.1091/mbc.E25-03-0113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomolecular condensates are micrometer-scale subcellular structures assembled through protein phase separation in living cells. Recent research shows that they are critical to normal biological processes and their misregulation may contribute to disease. A prominent example is the cancer-causing EML4-ALK fusion protein, which spontaneously forms biomolecular condensates that significantly enhance receptor tyrosine kinase (RTK) signaling within the condensate microenvironment. In this work, we show that a trimerization domain (TD) in EML4-ALK is necessary for condensate formation. By designing a peptide targeting the TD, we disrupted EML4-ALK self-assembly, leading to the dissolution of pre-existing EML4-ALK condensates in patient lung tumor-derived cells. Notably, this disruption significantly reduced EML4-ALK-dependent signaling and cell proliferation. Our findings demonstrate that interfering with a specific protein-protein interaction can disrupt oncogenic biomolecular condensates and attenuate their associated signaling. These results highlight the potential of targeting condensate assembly as a strategy to modulate oncogenic signaling.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"br25\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483323/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E25-03-0113\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E25-03-0113","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Biomolecular condensates are micrometer-scale subcellular structures assembled through protein phase separation in living cells. Recent research shows that they are critical to normal biological processes and their misregulation may contribute to disease. A prominent example is the cancer-causing EML4-ALK fusion protein, which spontaneously forms biomolecular condensates that significantly enhance receptor tyrosine kinase (RTK) signaling within the condensate microenvironment. In this work, we show that a trimerization domain (TD) in EML4-ALK is necessary for condensate formation. By designing a peptide targeting the TD, we disrupted EML4-ALK self-assembly, leading to the dissolution of pre-existing EML4-ALK condensates in patient lung tumor-derived cells. Notably, this disruption significantly reduced EML4-ALK-dependent signaling and cell proliferation. Our findings demonstrate that interfering with a specific protein-protein interaction can disrupt oncogenic biomolecular condensates and attenuate their associated signaling. These results highlight the potential of targeting condensate assembly as a strategy to modulate oncogenic signaling.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.