SynapseNet:自动突触重建的深度学习。

IF 2.7 3区 生物学 Q3 CELL BIOLOGY
Molecular Biology of the Cell Pub Date : 2025-10-01 Epub Date: 2025-08-28 DOI:10.1091/mbc.E24-11-0519
Sarah Muth, Frederieke Moschref, Luca Freckmann, Sophia Mutschall, Ines Hojas-Garcia-Plaza, Julius N Bahr, Arsen Petrovic, Thanh Thao Do, Valentin Schwarze, Anwai Archit, Kirsten Weyand, Susann Michanski, Lydia Maus, Cordelia Imig, Anika Hintze, Nils Brose, Carolin Wichmann, Ruben Fernandez-Busnadiego, Tobias Moser, Silvio O Rizzoli, Benjamin H Cooper, Constantin Pape
{"title":"SynapseNet:自动突触重建的深度学习。","authors":"Sarah Muth, Frederieke Moschref, Luca Freckmann, Sophia Mutschall, Ines Hojas-Garcia-Plaza, Julius N Bahr, Arsen Petrovic, Thanh Thao Do, Valentin Schwarze, Anwai Archit, Kirsten Weyand, Susann Michanski, Lydia Maus, Cordelia Imig, Anika Hintze, Nils Brose, Carolin Wichmann, Ruben Fernandez-Busnadiego, Tobias Moser, Silvio O Rizzoli, Benjamin H Cooper, Constantin Pape","doi":"10.1091/mbc.E24-11-0519","DOIUrl":null,"url":null,"abstract":"<p><p>Electron microscopy is an important technique for the study of synaptic morphology and its relation to synaptic function. The data analysis for this task requires the segmentation of the relevant synaptic structures, such as synaptic vesicles (SV), active zones, mitochondria, presynaptic densities, synaptic ribbons, and synaptic compartments. Previous studies were predominantly based on manual segmentation, which is very time-consuming and prevented the systematic analysis of large datasets. Here, we introduce SynapseNet, a tool for the automatic segmentation and analysis of synapses in electron micrographs. It can reliably segment SVs and other synaptic structures in a wide range of electron microscopy approaches, thanks to a large annotated dataset, which we assembled, and domain adaptation functionality we developed. We demonstrated its capability for (semi-)automatic biological analysis in two applications and made it available as an easy-to-use tool to enable novel data-driven insights into synapse organization and function.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar127"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483319/pdf/","citationCount":"0","resultStr":"{\"title\":\"SynapseNet: Deep learning for automatic synapse reconstruction.\",\"authors\":\"Sarah Muth, Frederieke Moschref, Luca Freckmann, Sophia Mutschall, Ines Hojas-Garcia-Plaza, Julius N Bahr, Arsen Petrovic, Thanh Thao Do, Valentin Schwarze, Anwai Archit, Kirsten Weyand, Susann Michanski, Lydia Maus, Cordelia Imig, Anika Hintze, Nils Brose, Carolin Wichmann, Ruben Fernandez-Busnadiego, Tobias Moser, Silvio O Rizzoli, Benjamin H Cooper, Constantin Pape\",\"doi\":\"10.1091/mbc.E24-11-0519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electron microscopy is an important technique for the study of synaptic morphology and its relation to synaptic function. The data analysis for this task requires the segmentation of the relevant synaptic structures, such as synaptic vesicles (SV), active zones, mitochondria, presynaptic densities, synaptic ribbons, and synaptic compartments. Previous studies were predominantly based on manual segmentation, which is very time-consuming and prevented the systematic analysis of large datasets. Here, we introduce SynapseNet, a tool for the automatic segmentation and analysis of synapses in electron micrographs. It can reliably segment SVs and other synaptic structures in a wide range of electron microscopy approaches, thanks to a large annotated dataset, which we assembled, and domain adaptation functionality we developed. We demonstrated its capability for (semi-)automatic biological analysis in two applications and made it available as an easy-to-use tool to enable novel data-driven insights into synapse organization and function.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"ar127\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483319/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E24-11-0519\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-11-0519","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

电子显微镜是研究突触形态及其与突触功能关系的重要技术手段。这项任务的数据分析需要分割相关的突触结构,如突触囊泡、活动区、线粒体、突触前密度、突触带和突触室。以往的研究主要是基于人工分割,这非常耗时,并且阻碍了对大数据集的系统分析。在这里,我们介绍SynapseNet,一个自动分割和分析电子显微图中的突触的工具。它可以在广泛的电子显微镜方法中可靠地分割突触囊泡和其他突触结构,这要归功于我们组装的大型注释数据集和我们开发的域适应功能。我们在两个应用程序中展示了它的(半)自动化生物分析能力,并使其成为一种易于使用的工具,以实现对突触组织和功能的新颖数据驱动见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SynapseNet: Deep learning for automatic synapse reconstruction.

Electron microscopy is an important technique for the study of synaptic morphology and its relation to synaptic function. The data analysis for this task requires the segmentation of the relevant synaptic structures, such as synaptic vesicles (SV), active zones, mitochondria, presynaptic densities, synaptic ribbons, and synaptic compartments. Previous studies were predominantly based on manual segmentation, which is very time-consuming and prevented the systematic analysis of large datasets. Here, we introduce SynapseNet, a tool for the automatic segmentation and analysis of synapses in electron micrographs. It can reliably segment SVs and other synaptic structures in a wide range of electron microscopy approaches, thanks to a large annotated dataset, which we assembled, and domain adaptation functionality we developed. We demonstrated its capability for (semi-)automatic biological analysis in two applications and made it available as an easy-to-use tool to enable novel data-driven insights into synapse organization and function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信