Feng-Jie Shen , Wei-Nan Cao , Xue-Chun Han , Qiu-Yue Pan , Yuan Wang , Rong Zhang , Gang Wei , Jin-Kui Yang
{"title":"微塑料通过nat10介导的FASN-PI3K/AKT信号的表观遗传失调损害伤口愈合。","authors":"Feng-Jie Shen , Wei-Nan Cao , Xue-Chun Han , Qiu-Yue Pan , Yuan Wang , Rong Zhang , Gang Wei , Jin-Kui Yang","doi":"10.1016/j.impact.2025.100580","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) are environmental pollutants with potential health risks. This study examined the effect of MPs on wound healing in both diabetic and non-diabetic mice. MPs exposure significantly delayed wound healing, particularly in diabetic mice, with reduced epidermal thickness and impaired collagen deposition. Mechanistically, MPs suppressed cell proliferation, angiogenesis, and increased apoptosis. Transcriptomic analysis identified dysregulation of critical wound healing pathways, especially those involved in inflammation, extracellular matrix remodeling, and lipid metabolism. Notably, the PI3K/AKT signaling pathway was inhibited. In vitro experiments using human dermal fibroblasts confirmed that MPs disrupted the PI3K/AKT pathway, reducing cell proliferation and migration. Further investigation revealed that MPs suppressed <em>N</em>-acetyltransferase 10 (NAT10) expression, leading to reduced ac4C-dependent stabilization of <em>Fasn</em> mRNA, which in turn diminished lipid synthesis and further inhibited the PI3K/AKT pathway. Our findings reveal a novel interaction between MPs and diabetes in impairing wound healing and suggest the NAT10-FASN-PI3K/AKT axis as a potential therapeutic target.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"39 ","pages":"Article 100580"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastics impair wound healing via NAT10-mediated epigenetic dysregulation of FASN-PI3K/AKT signaling\",\"authors\":\"Feng-Jie Shen , Wei-Nan Cao , Xue-Chun Han , Qiu-Yue Pan , Yuan Wang , Rong Zhang , Gang Wei , Jin-Kui Yang\",\"doi\":\"10.1016/j.impact.2025.100580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastics (MPs) are environmental pollutants with potential health risks. This study examined the effect of MPs on wound healing in both diabetic and non-diabetic mice. MPs exposure significantly delayed wound healing, particularly in diabetic mice, with reduced epidermal thickness and impaired collagen deposition. Mechanistically, MPs suppressed cell proliferation, angiogenesis, and increased apoptosis. Transcriptomic analysis identified dysregulation of critical wound healing pathways, especially those involved in inflammation, extracellular matrix remodeling, and lipid metabolism. Notably, the PI3K/AKT signaling pathway was inhibited. In vitro experiments using human dermal fibroblasts confirmed that MPs disrupted the PI3K/AKT pathway, reducing cell proliferation and migration. Further investigation revealed that MPs suppressed <em>N</em>-acetyltransferase 10 (NAT10) expression, leading to reduced ac4C-dependent stabilization of <em>Fasn</em> mRNA, which in turn diminished lipid synthesis and further inhibited the PI3K/AKT pathway. Our findings reveal a novel interaction between MPs and diabetes in impairing wound healing and suggest the NAT10-FASN-PI3K/AKT axis as a potential therapeutic target.</div></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"39 \",\"pages\":\"Article 100580\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074825000400\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074825000400","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microplastics impair wound healing via NAT10-mediated epigenetic dysregulation of FASN-PI3K/AKT signaling
Microplastics (MPs) are environmental pollutants with potential health risks. This study examined the effect of MPs on wound healing in both diabetic and non-diabetic mice. MPs exposure significantly delayed wound healing, particularly in diabetic mice, with reduced epidermal thickness and impaired collagen deposition. Mechanistically, MPs suppressed cell proliferation, angiogenesis, and increased apoptosis. Transcriptomic analysis identified dysregulation of critical wound healing pathways, especially those involved in inflammation, extracellular matrix remodeling, and lipid metabolism. Notably, the PI3K/AKT signaling pathway was inhibited. In vitro experiments using human dermal fibroblasts confirmed that MPs disrupted the PI3K/AKT pathway, reducing cell proliferation and migration. Further investigation revealed that MPs suppressed N-acetyltransferase 10 (NAT10) expression, leading to reduced ac4C-dependent stabilization of Fasn mRNA, which in turn diminished lipid synthesis and further inhibited the PI3K/AKT pathway. Our findings reveal a novel interaction between MPs and diabetes in impairing wound healing and suggest the NAT10-FASN-PI3K/AKT axis as a potential therapeutic target.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.