Corrina G Robertson, Erin R Curtis, Olivia Gorman, Lyana Matonti, Daniel J Lew
{"title":"Gα-MAPK互作在酿酒酵母交配中的作用","authors":"Corrina G Robertson, Erin R Curtis, Olivia Gorman, Lyana Matonti, Daniel J Lew","doi":"10.1091/mbc.E23-09-0362","DOIUrl":null,"url":null,"abstract":"<p><p>Guidance of cell growth or movement in response to chemical cues in the environment is critical for many cell behaviors. Budding yeast orientation of polarized growth in response to gradients of mating pheromones provides a tractable model to address how cells accurately assess small spatial differences in chemical concentrations. Pheromones bind to receptors that act through heterotrimeric G proteins to promote activation of the MAPK Fus3. Active Fus3 binds to Gα, which is thought to enhance local phosphorylation of relevant MAPK substrates to promote orientation of polarity toward high-pheromone regions. Polarity is oriented by a pathway in which Gβγ binds the scaffold protein Far1 to activate the conserved polarity regulator Cdc42, which activates the formin Bni1 to orient actin and hence growth. Gβγ, Far1, and Bni1 are all MAPK substrates whose phosphorylation could improve orientation toward high-pheromone regions. Here, we show that the Gα-MAPK interaction can enhance the efficiency of polarity-site alignment between mating partners, particularly under conditions with high Fus3 activity. Surprisingly, however, we find no evidence that phosphorylation of Gβγ, Far1, or Bni1 contribute to the benefit conferred by Gα-MAPK interaction. The precise role of this interaction remains mysterious.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br24"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483324/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of Gα-MAPK interaction in mating of <i>Saccharomyces cerevisiae</i>.\",\"authors\":\"Corrina G Robertson, Erin R Curtis, Olivia Gorman, Lyana Matonti, Daniel J Lew\",\"doi\":\"10.1091/mbc.E23-09-0362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Guidance of cell growth or movement in response to chemical cues in the environment is critical for many cell behaviors. Budding yeast orientation of polarized growth in response to gradients of mating pheromones provides a tractable model to address how cells accurately assess small spatial differences in chemical concentrations. Pheromones bind to receptors that act through heterotrimeric G proteins to promote activation of the MAPK Fus3. Active Fus3 binds to Gα, which is thought to enhance local phosphorylation of relevant MAPK substrates to promote orientation of polarity toward high-pheromone regions. Polarity is oriented by a pathway in which Gβγ binds the scaffold protein Far1 to activate the conserved polarity regulator Cdc42, which activates the formin Bni1 to orient actin and hence growth. Gβγ, Far1, and Bni1 are all MAPK substrates whose phosphorylation could improve orientation toward high-pheromone regions. Here, we show that the Gα-MAPK interaction can enhance the efficiency of polarity-site alignment between mating partners, particularly under conditions with high Fus3 activity. Surprisingly, however, we find no evidence that phosphorylation of Gβγ, Far1, or Bni1 contribute to the benefit conferred by Gα-MAPK interaction. The precise role of this interaction remains mysterious.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"br24\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E23-09-0362\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E23-09-0362","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Role of Gα-MAPK interaction in mating of Saccharomyces cerevisiae.
Guidance of cell growth or movement in response to chemical cues in the environment is critical for many cell behaviors. Budding yeast orientation of polarized growth in response to gradients of mating pheromones provides a tractable model to address how cells accurately assess small spatial differences in chemical concentrations. Pheromones bind to receptors that act through heterotrimeric G proteins to promote activation of the MAPK Fus3. Active Fus3 binds to Gα, which is thought to enhance local phosphorylation of relevant MAPK substrates to promote orientation of polarity toward high-pheromone regions. Polarity is oriented by a pathway in which Gβγ binds the scaffold protein Far1 to activate the conserved polarity regulator Cdc42, which activates the formin Bni1 to orient actin and hence growth. Gβγ, Far1, and Bni1 are all MAPK substrates whose phosphorylation could improve orientation toward high-pheromone regions. Here, we show that the Gα-MAPK interaction can enhance the efficiency of polarity-site alignment between mating partners, particularly under conditions with high Fus3 activity. Surprisingly, however, we find no evidence that phosphorylation of Gβγ, Far1, or Bni1 contribute to the benefit conferred by Gα-MAPK interaction. The precise role of this interaction remains mysterious.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.