软x射线断层扫描的自动分割:酵母全细胞定量成像的亚微米分辨率高通量天然细胞结构。

IF 2.7 3区 生物学 Q3 CELL BIOLOGY
Molecular Biology of the Cell Pub Date : 2025-10-01 Epub Date: 2025-08-28 DOI:10.1091/mbc.E24-10-0486
Jianhua Chen, Mary Mirvis, Axel Ekman, Bieke Vanslembrouck, Mark Le Gros, Carolyn Larabell, Wallace F Marshall
{"title":"软x射线断层扫描的自动分割:酵母全细胞定量成像的亚微米分辨率高通量天然细胞结构。","authors":"Jianhua Chen, Mary Mirvis, Axel Ekman, Bieke Vanslembrouck, Mark Le Gros, Carolyn Larabell, Wallace F Marshall","doi":"10.1091/mbc.E24-10-0486","DOIUrl":null,"url":null,"abstract":"<p><p>Soft X-ray tomography (SXT) is an invaluable tool for quantitatively analyzing cellular structures at suboptical isotropic resolution. However, it has traditionally depended on manual segmentation, limiting its scalability for large datasets. Here, we leverage a deep learning-based autosegmentation pipeline to segment and label cellular structures in hundreds of cells across three <i>Saccharomyces cerevisiae</i> strains. This task-based pipeline uses manual iterative refinement to improve segmentation accuracy for key structures, including the cell body, nucleus, vacuole, and lipid droplets, enabling high-throughput and precise phenotypic analysis. Using this approach, we quantitatively compared the three-dimensional (3D) whole-cell morphometric characteristics of wild-type, VPH1-GFP, and <i>vac14</i> strains, uncovering detailed strain-specific cell and organelle size and shape variations. We show the utility of SXT data for precise 3D curvature analysis of entire organelles and cells and detection of fine morphological features using surface meshes. Our approach facilitates comparative analyses with high spatial precision and statistical throughput, uncovering subtle morphological features at the single-cell and population level. This workflow significantly enhances our ability to characterize cell anatomy and supports scalable studies on the mesoscale, with applications in investigating cellular architecture, organelle biology, and genetic research across diverse biological contexts.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar132"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12509287/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated segmentation of soft X-ray tomography: Native cellular structure with submicron resolution at high-throughput for whole-cell quantitative imaging in yeast.\",\"authors\":\"Jianhua Chen, Mary Mirvis, Axel Ekman, Bieke Vanslembrouck, Mark Le Gros, Carolyn Larabell, Wallace F Marshall\",\"doi\":\"10.1091/mbc.E24-10-0486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soft X-ray tomography (SXT) is an invaluable tool for quantitatively analyzing cellular structures at suboptical isotropic resolution. However, it has traditionally depended on manual segmentation, limiting its scalability for large datasets. Here, we leverage a deep learning-based autosegmentation pipeline to segment and label cellular structures in hundreds of cells across three <i>Saccharomyces cerevisiae</i> strains. This task-based pipeline uses manual iterative refinement to improve segmentation accuracy for key structures, including the cell body, nucleus, vacuole, and lipid droplets, enabling high-throughput and precise phenotypic analysis. Using this approach, we quantitatively compared the three-dimensional (3D) whole-cell morphometric characteristics of wild-type, VPH1-GFP, and <i>vac14</i> strains, uncovering detailed strain-specific cell and organelle size and shape variations. We show the utility of SXT data for precise 3D curvature analysis of entire organelles and cells and detection of fine morphological features using surface meshes. Our approach facilitates comparative analyses with high spatial precision and statistical throughput, uncovering subtle morphological features at the single-cell and population level. This workflow significantly enhances our ability to characterize cell anatomy and supports scalable studies on the mesoscale, with applications in investigating cellular architecture, organelle biology, and genetic research across diverse biological contexts.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"ar132\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12509287/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E24-10-0486\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-10-0486","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

软x射线断层扫描(SXT)是在亚光学各向同性分辨率下定量分析细胞结构的宝贵工具。然而,它传统上依赖于人工分割,限制了它对大型数据集的可扩展性。在这里,我们利用基于深度学习的自动分割管道来分割和标记三种酿酒酵母菌株中数百个细胞的细胞结构。这个基于任务的流水线采用人工迭代细化来提高关键结构的分割精度,包括细胞体、细胞核、液泡和脂滴,从而实现高通量和精确的表型分析。利用这种方法,我们定量比较了野生型、VPH1-GFP和vac14菌株的三维全细胞形态特征,揭示了菌株特异性细胞和细胞器大小和形状的详细变化。我们展示了SXT数据对整个细胞器和细胞的精确3D曲率分析以及使用表面网格检测精细形态学特征的效用。我们的方法促进了具有高空间精度和统计吞吐量的比较分析,揭示了单细胞和种群水平上的微妙形态特征。该工作流程显著增强了我们表征细胞解剖的能力,并支持在中尺度上进行可扩展的研究,应用于研究细胞结构、细胞器生物学和不同生物背景下的基因研究。[媒体:看到文本][媒体:看到文本][媒体:看到文本][媒体:看到文本][媒体:看到文本][媒体:看到文本][媒体:看到文本][媒体:看到文本][媒体:看到文本][媒体:看到文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated segmentation of soft X-ray tomography: Native cellular structure with submicron resolution at high-throughput for whole-cell quantitative imaging in yeast.

Soft X-ray tomography (SXT) is an invaluable tool for quantitatively analyzing cellular structures at suboptical isotropic resolution. However, it has traditionally depended on manual segmentation, limiting its scalability for large datasets. Here, we leverage a deep learning-based autosegmentation pipeline to segment and label cellular structures in hundreds of cells across three Saccharomyces cerevisiae strains. This task-based pipeline uses manual iterative refinement to improve segmentation accuracy for key structures, including the cell body, nucleus, vacuole, and lipid droplets, enabling high-throughput and precise phenotypic analysis. Using this approach, we quantitatively compared the three-dimensional (3D) whole-cell morphometric characteristics of wild-type, VPH1-GFP, and vac14 strains, uncovering detailed strain-specific cell and organelle size and shape variations. We show the utility of SXT data for precise 3D curvature analysis of entire organelles and cells and detection of fine morphological features using surface meshes. Our approach facilitates comparative analyses with high spatial precision and statistical throughput, uncovering subtle morphological features at the single-cell and population level. This workflow significantly enhances our ability to characterize cell anatomy and supports scalable studies on the mesoscale, with applications in investigating cellular architecture, organelle biology, and genetic research across diverse biological contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信