Toni de-Dios, Biancamaria Bonucci, Rémi Barbieri, Alena Kushniarevich, Eugenia D'Atanasio, Jenna Dittmar, Craig Cessford, Anu Solnik, John E Robb, Christina Warinner, Ester Oras, Christiana L Scheib
{"title":"骨黏附沉积物作为靶和环境DNA和蛋白质的来源。","authors":"Toni de-Dios, Biancamaria Bonucci, Rémi Barbieri, Alena Kushniarevich, Eugenia D'Atanasio, Jenna Dittmar, Craig Cessford, Anu Solnik, John E Robb, Christina Warinner, Ester Oras, Christiana L Scheib","doi":"10.1093/molbev/msaf202","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, sediments from cave environments have provided invaluable insights into ancient hominids, as well as past fauna and flora. Unfortunately, however, sediments are not always collected during excavation. In this study, we analyzed an overlooked but abundant resource in archaeological collections - sediments adhered to bone. We performed metagenomics and metaproteomics analysis on sediment from several human skeletal elements, originating from Neolithic to Medieval sites in England. We were able to reconstruct a partial human genome, the genetic profile of which matches that recovered from the original skeletal element. Additionally, aDNA sequences matching the genomes of endogenous gut microbiome bacteria were identified. We also found the presence of genetic sequences corresponding to animals and plants. In particular, we managed to retrieve the partial genome and proteome of a Black Rat (Rattus rattus), sharing close genetic affinities to other medieval Rattus rattus. Our results demonstrate that material that is usually ignored or discarded, can be used to reveal information about the individual and the environmental conditions at the time of their death.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409277/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bone Adhered Sediments as a Source of Target and Environmental DNA and Proteins.\",\"authors\":\"Toni de-Dios, Biancamaria Bonucci, Rémi Barbieri, Alena Kushniarevich, Eugenia D'Atanasio, Jenna Dittmar, Craig Cessford, Anu Solnik, John E Robb, Christina Warinner, Ester Oras, Christiana L Scheib\",\"doi\":\"10.1093/molbev/msaf202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, sediments from cave environments have provided invaluable insights into ancient hominids, as well as past fauna and flora. Unfortunately, however, sediments are not always collected during excavation. In this study, we analyzed an overlooked but abundant resource in archaeological collections - sediments adhered to bone. We performed metagenomics and metaproteomics analysis on sediment from several human skeletal elements, originating from Neolithic to Medieval sites in England. We were able to reconstruct a partial human genome, the genetic profile of which matches that recovered from the original skeletal element. Additionally, aDNA sequences matching the genomes of endogenous gut microbiome bacteria were identified. We also found the presence of genetic sequences corresponding to animals and plants. In particular, we managed to retrieve the partial genome and proteome of a Black Rat (Rattus rattus), sharing close genetic affinities to other medieval Rattus rattus. Our results demonstrate that material that is usually ignored or discarded, can be used to reveal information about the individual and the environmental conditions at the time of their death.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msaf202\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf202","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bone Adhered Sediments as a Source of Target and Environmental DNA and Proteins.
In recent years, sediments from cave environments have provided invaluable insights into ancient hominids, as well as past fauna and flora. Unfortunately, however, sediments are not always collected during excavation. In this study, we analyzed an overlooked but abundant resource in archaeological collections - sediments adhered to bone. We performed metagenomics and metaproteomics analysis on sediment from several human skeletal elements, originating from Neolithic to Medieval sites in England. We were able to reconstruct a partial human genome, the genetic profile of which matches that recovered from the original skeletal element. Additionally, aDNA sequences matching the genomes of endogenous gut microbiome bacteria were identified. We also found the presence of genetic sequences corresponding to animals and plants. In particular, we managed to retrieve the partial genome and proteome of a Black Rat (Rattus rattus), sharing close genetic affinities to other medieval Rattus rattus. Our results demonstrate that material that is usually ignored or discarded, can be used to reveal information about the individual and the environmental conditions at the time of their death.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.