{"title":"依普沙坦通过阻断AT1R/SNS/HMGB1和调节PDL-1减轻小鼠外伤性脑损伤多器官功能障碍综合征。","authors":"Manisha Thakur , Sunil Sharma , Neeru Vasudeva , Paras Saini , Deepika Lather , Deepak Deepak","doi":"10.1016/j.mcn.2025.104035","DOIUrl":null,"url":null,"abstract":"<div><div>Traumatic brain injury is not constrained only to the brain but delayed secondary events disturb the end organ functioning via intense response of three homeostatic mechanisms such as sympathetic activity, inflammation, and immunosuppression. Current study involved weight drop model to induce TBI in Swiss albino mice. Eprosartan was administered orally after 30–45 min post injury to mice in 0.35 mg/kg and 0.7 mg/kg doses. Mice were tested for neurobehavioral alterations and multiple organs, including brain, heart, lungs, liver, and kidney were excised for further edema, biochemical, inflammatory, catecholamine, gene expression and histopathological estimations at both acute and chronic phases of injury. Results highlighted that Epro improved neurobehavioral performance, maintained the BBB and lung integrity. It also ameliorated the oxidative stress as well as docking studies exhibited strong binding affinity of Epro for HMGB1 and PDL-1, that further supported by low tissue HMGB1 and serum IL-6 and TNF-α cytokines levels which halted the systemic hyperinflammation. Moreover, Epro treatment successfully restored the cardiac, hepatic and kidney function through stabilized serum biomarkers with declined plasma noradrenaline levels that subsides the sympathetic storm. Considerably, a bizarre cellular morphology was displayed by the organs in acute phase of injury whereas Epro reversed the morphological changes at chronic stage. Also, epro encouraged the PD-1/PDL-1 and IL-10 gene expression in the tissues that regulates immune response. Thus, it is concluded that Epro exerts its organ protective effect against MODS via AT<sub>1</sub>/SNS pathway inhibition.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"135 ","pages":"Article 104035"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eprosartan alleviates the traumatic brain injury-induced multi-organ dysfunction syndrome in mice via AT1R/SNS/HMGB1 blockade and PDL-1 modulation\",\"authors\":\"Manisha Thakur , Sunil Sharma , Neeru Vasudeva , Paras Saini , Deepika Lather , Deepak Deepak\",\"doi\":\"10.1016/j.mcn.2025.104035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traumatic brain injury is not constrained only to the brain but delayed secondary events disturb the end organ functioning via intense response of three homeostatic mechanisms such as sympathetic activity, inflammation, and immunosuppression. Current study involved weight drop model to induce TBI in Swiss albino mice. Eprosartan was administered orally after 30–45 min post injury to mice in 0.35 mg/kg and 0.7 mg/kg doses. Mice were tested for neurobehavioral alterations and multiple organs, including brain, heart, lungs, liver, and kidney were excised for further edema, biochemical, inflammatory, catecholamine, gene expression and histopathological estimations at both acute and chronic phases of injury. Results highlighted that Epro improved neurobehavioral performance, maintained the BBB and lung integrity. It also ameliorated the oxidative stress as well as docking studies exhibited strong binding affinity of Epro for HMGB1 and PDL-1, that further supported by low tissue HMGB1 and serum IL-6 and TNF-α cytokines levels which halted the systemic hyperinflammation. Moreover, Epro treatment successfully restored the cardiac, hepatic and kidney function through stabilized serum biomarkers with declined plasma noradrenaline levels that subsides the sympathetic storm. Considerably, a bizarre cellular morphology was displayed by the organs in acute phase of injury whereas Epro reversed the morphological changes at chronic stage. Also, epro encouraged the PD-1/PDL-1 and IL-10 gene expression in the tissues that regulates immune response. Thus, it is concluded that Epro exerts its organ protective effect against MODS via AT<sub>1</sub>/SNS pathway inhibition.</div></div>\",\"PeriodicalId\":18739,\"journal\":{\"name\":\"Molecular and Cellular Neuroscience\",\"volume\":\"135 \",\"pages\":\"Article 104035\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044743125000454\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044743125000454","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Eprosartan alleviates the traumatic brain injury-induced multi-organ dysfunction syndrome in mice via AT1R/SNS/HMGB1 blockade and PDL-1 modulation
Traumatic brain injury is not constrained only to the brain but delayed secondary events disturb the end organ functioning via intense response of three homeostatic mechanisms such as sympathetic activity, inflammation, and immunosuppression. Current study involved weight drop model to induce TBI in Swiss albino mice. Eprosartan was administered orally after 30–45 min post injury to mice in 0.35 mg/kg and 0.7 mg/kg doses. Mice were tested for neurobehavioral alterations and multiple organs, including brain, heart, lungs, liver, and kidney were excised for further edema, biochemical, inflammatory, catecholamine, gene expression and histopathological estimations at both acute and chronic phases of injury. Results highlighted that Epro improved neurobehavioral performance, maintained the BBB and lung integrity. It also ameliorated the oxidative stress as well as docking studies exhibited strong binding affinity of Epro for HMGB1 and PDL-1, that further supported by low tissue HMGB1 and serum IL-6 and TNF-α cytokines levels which halted the systemic hyperinflammation. Moreover, Epro treatment successfully restored the cardiac, hepatic and kidney function through stabilized serum biomarkers with declined plasma noradrenaline levels that subsides the sympathetic storm. Considerably, a bizarre cellular morphology was displayed by the organs in acute phase of injury whereas Epro reversed the morphological changes at chronic stage. Also, epro encouraged the PD-1/PDL-1 and IL-10 gene expression in the tissues that regulates immune response. Thus, it is concluded that Epro exerts its organ protective effect against MODS via AT1/SNS pathway inhibition.
期刊介绍:
Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.