大豆Rj基因型和根瘤菌效应剂对根瘤共生的调控

IF 2 4区 环境科学与生态学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shogo Fukunaga, Safirah Tasa Nerves Ratu, Shin Okazaki
{"title":"大豆Rj基因型和根瘤菌效应剂对根瘤共生的调控","authors":"Shogo Fukunaga, Safirah Tasa Nerves Ratu, Shin Okazaki","doi":"10.1264/jsme2.ME25027","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean (Glycine max) is one of the most important crops worldwide. Root nodule symbiosis between soybean and rhizobia has been extensively exami-ned due to its significance for agricultural productivity and environmental sustainability. Recent advances have enhanced our understanding of the soybean genotypes known as the Rj/rj genotypes, which play a critical role in regulating root nodule symbiosis. Furthermore, the function of rhizobium-secreted proteins, termed effectors, in eliciting specific responses in soybean Rj/rj genotypes has been elucidated. This review summarizes the involvement of soybean Rj/rj genotypes and their corresponding root nodule bacterial effectors in the regulation of nodule formation. We also discussed the potential for manipulating root nodule symbiosis by applying Rj/rj genotypes in soybean breeding programs, which may enhance nitrogen fixation efficiency and subsequently reduce the need for chemical fertilizers and greenhouse gas emissions from agricultural land.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"40 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501869/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regulation of Root Nodule Symbiosis by Soybean Rj Genotypes and Rhizobial Effectors.\",\"authors\":\"Shogo Fukunaga, Safirah Tasa Nerves Ratu, Shin Okazaki\",\"doi\":\"10.1264/jsme2.ME25027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soybean (Glycine max) is one of the most important crops worldwide. Root nodule symbiosis between soybean and rhizobia has been extensively exami-ned due to its significance for agricultural productivity and environmental sustainability. Recent advances have enhanced our understanding of the soybean genotypes known as the Rj/rj genotypes, which play a critical role in regulating root nodule symbiosis. Furthermore, the function of rhizobium-secreted proteins, termed effectors, in eliciting specific responses in soybean Rj/rj genotypes has been elucidated. This review summarizes the involvement of soybean Rj/rj genotypes and their corresponding root nodule bacterial effectors in the regulation of nodule formation. We also discussed the potential for manipulating root nodule symbiosis by applying Rj/rj genotypes in soybean breeding programs, which may enhance nitrogen fixation efficiency and subsequently reduce the need for chemical fertilizers and greenhouse gas emissions from agricultural land.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501869/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME25027\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME25027","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大豆(Glycine max)是世界上最重要的农作物之一。由于根瘤菌与大豆根瘤菌的共生关系对农业生产力和环境可持续性具有重要意义,人们对根瘤共生关系进行了广泛的研究。近年来,我们对大豆基因型Rj/ Rj基因型的认识有所提高,这些基因型在调控根瘤共生中起着至关重要的作用。此外,根瘤菌分泌蛋白(称为效应物)在大豆Rj/ Rj基因型中引发特异性反应的功能已经被阐明。本文综述了大豆Rj/ Rj基因型及其相应的根瘤细菌效应物在根瘤形成调控中的作用。我们还讨论了通过在大豆育种计划中应用Rj/ Rj基因型来控制根瘤共生的潜力,这可能提高固氮效率,从而减少对化肥的需求和农业土地的温室气体排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulation of Root Nodule Symbiosis by Soybean Rj Genotypes and Rhizobial Effectors.

Soybean (Glycine max) is one of the most important crops worldwide. Root nodule symbiosis between soybean and rhizobia has been extensively exami-ned due to its significance for agricultural productivity and environmental sustainability. Recent advances have enhanced our understanding of the soybean genotypes known as the Rj/rj genotypes, which play a critical role in regulating root nodule symbiosis. Furthermore, the function of rhizobium-secreted proteins, termed effectors, in eliciting specific responses in soybean Rj/rj genotypes has been elucidated. This review summarizes the involvement of soybean Rj/rj genotypes and their corresponding root nodule bacterial effectors in the regulation of nodule formation. We also discussed the potential for manipulating root nodule symbiosis by applying Rj/rj genotypes in soybean breeding programs, which may enhance nitrogen fixation efficiency and subsequently reduce the need for chemical fertilizers and greenhouse gas emissions from agricultural land.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbes and Environments
Microbes and Environments 生物-生物工程与应用微生物
CiteScore
4.10
自引率
13.60%
发文量
66
审稿时长
3 months
期刊介绍: Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信