硬模板合成反蛋白石大孔NiO-SnO2异质结增强丙酮检测。

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Feihu Li, , , Bowen Yang, , , Jingkun Li, , , Yangyang Long, , , Zichang Zhang, , , Zhipeng Wang, , , Jiabao Wang, , , Guangqiang Chen, , , Ziqiang Zhang, , , Ruiming Yang, , , Kan Wang, , , Weihua Zou, , , Fang Fang*, , , Yeguang Zhang*, , , Peng Wang, , and , Zili Zhan, 
{"title":"硬模板合成反蛋白石大孔NiO-SnO2异质结增强丙酮检测。","authors":"Feihu Li,&nbsp;, ,&nbsp;Bowen Yang,&nbsp;, ,&nbsp;Jingkun Li,&nbsp;, ,&nbsp;Yangyang Long,&nbsp;, ,&nbsp;Zichang Zhang,&nbsp;, ,&nbsp;Zhipeng Wang,&nbsp;, ,&nbsp;Jiabao Wang,&nbsp;, ,&nbsp;Guangqiang Chen,&nbsp;, ,&nbsp;Ziqiang Zhang,&nbsp;, ,&nbsp;Ruiming Yang,&nbsp;, ,&nbsp;Kan Wang,&nbsp;, ,&nbsp;Weihua Zou,&nbsp;, ,&nbsp;Fang Fang*,&nbsp;, ,&nbsp;Yeguang Zhang*,&nbsp;, ,&nbsp;Peng Wang,&nbsp;, and ,&nbsp;Zili Zhan,&nbsp;","doi":"10.1021/acssensors.5c01979","DOIUrl":null,"url":null,"abstract":"<p >Chemiresistive gas sensors have emerged as a promising technology for gas detection, due to their real-time response, low costs, high sensitivity, excellent stability, and facile fabrication. However, the full realization of their potential is currently constrained by the scarcity of sensing materials capable of delivering high selectivity and ultrafast response. In this study, we prepared a three-dimensional inverse opal macroporous SnO<sub>2</sub> doped with NiO (3DIO NiO-SnO<sub>2</sub>). The macroporous structure of 3DIO NiO-SnO<sub>2</sub> exhibits a larger specific surface area, which facilitates the diffusion and adsorption and desorption of acetone gas within the material. Furthermore, the formation of a p–n heterojunction substantially accelerates electron transport rates at the interfaces within the material. The 3DIO NiO-SnO<sub>2</sub> sensor demonstrates a response value of 202 to 100 ppm of acetone, which is 12 times higher than that of the SnO<sub>2</sub> sensor. Moreover, the 3DIO NiO-SnO<sub>2</sub> sensor exhibits fast response kinetics to acetone. At the optimal operating temperature of 198.5 °C, the response time to acetone gas is only 3 s, along with excellent repeatability and long-term stability. This work offers novel insights into the design strategy for macroporous NiO-SnO<sub>2</sub> nanomaterials, enabling high-performance quantitative detection in acetone gas sensors.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 9","pages":"6971–6980"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hard-Template Synthesis of Inverse Opal Macroporous NiO-SnO2 Heterojunction for Enhanced Acetone Detection\",\"authors\":\"Feihu Li,&nbsp;, ,&nbsp;Bowen Yang,&nbsp;, ,&nbsp;Jingkun Li,&nbsp;, ,&nbsp;Yangyang Long,&nbsp;, ,&nbsp;Zichang Zhang,&nbsp;, ,&nbsp;Zhipeng Wang,&nbsp;, ,&nbsp;Jiabao Wang,&nbsp;, ,&nbsp;Guangqiang Chen,&nbsp;, ,&nbsp;Ziqiang Zhang,&nbsp;, ,&nbsp;Ruiming Yang,&nbsp;, ,&nbsp;Kan Wang,&nbsp;, ,&nbsp;Weihua Zou,&nbsp;, ,&nbsp;Fang Fang*,&nbsp;, ,&nbsp;Yeguang Zhang*,&nbsp;, ,&nbsp;Peng Wang,&nbsp;, and ,&nbsp;Zili Zhan,&nbsp;\",\"doi\":\"10.1021/acssensors.5c01979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chemiresistive gas sensors have emerged as a promising technology for gas detection, due to their real-time response, low costs, high sensitivity, excellent stability, and facile fabrication. However, the full realization of their potential is currently constrained by the scarcity of sensing materials capable of delivering high selectivity and ultrafast response. In this study, we prepared a three-dimensional inverse opal macroporous SnO<sub>2</sub> doped with NiO (3DIO NiO-SnO<sub>2</sub>). The macroporous structure of 3DIO NiO-SnO<sub>2</sub> exhibits a larger specific surface area, which facilitates the diffusion and adsorption and desorption of acetone gas within the material. Furthermore, the formation of a p–n heterojunction substantially accelerates electron transport rates at the interfaces within the material. The 3DIO NiO-SnO<sub>2</sub> sensor demonstrates a response value of 202 to 100 ppm of acetone, which is 12 times higher than that of the SnO<sub>2</sub> sensor. Moreover, the 3DIO NiO-SnO<sub>2</sub> sensor exhibits fast response kinetics to acetone. At the optimal operating temperature of 198.5 °C, the response time to acetone gas is only 3 s, along with excellent repeatability and long-term stability. This work offers novel insights into the design strategy for macroporous NiO-SnO<sub>2</sub> nanomaterials, enabling high-performance quantitative detection in acetone gas sensors.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"10 9\",\"pages\":\"6971–6980\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.5c01979\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.5c01979","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

化学电阻式气体传感器由于其实时响应、低成本、高灵敏度、优异的稳定性和易于制造等优点,已成为一种很有前途的气体检测技术。然而,其潜力的充分实现目前受到能够提供高选择性和超快响应的传感材料的稀缺性的限制。在这项研究中,我们制备了一个三维反蛋白石大孔SnO2掺杂NiO (3DIO NiO-SnO2)。3DIO NiO-SnO2的大孔结构具有较大的比表面积,有利于丙酮气体在材料内部的扩散和吸附解吸。此外,p-n异质结的形成大大加快了材料界面处的电子传输速率。3DIO NiO-SnO2传感器的响应值为202 ~ 100ppm丙酮,是SnO2传感器的12倍。此外,3DIO NiO-SnO2传感器对丙酮具有快速的响应动力学。在198.5℃的最佳工作温度下,对丙酮气体的响应时间仅为3 s,具有良好的重复性和长期稳定性。这项工作为大孔NiO-SnO2纳米材料的设计策略提供了新的见解,使丙酮气体传感器的高性能定量检测成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hard-Template Synthesis of Inverse Opal Macroporous NiO-SnO2 Heterojunction for Enhanced Acetone Detection

Hard-Template Synthesis of Inverse Opal Macroporous NiO-SnO2 Heterojunction for Enhanced Acetone Detection

Chemiresistive gas sensors have emerged as a promising technology for gas detection, due to their real-time response, low costs, high sensitivity, excellent stability, and facile fabrication. However, the full realization of their potential is currently constrained by the scarcity of sensing materials capable of delivering high selectivity and ultrafast response. In this study, we prepared a three-dimensional inverse opal macroporous SnO2 doped with NiO (3DIO NiO-SnO2). The macroporous structure of 3DIO NiO-SnO2 exhibits a larger specific surface area, which facilitates the diffusion and adsorption and desorption of acetone gas within the material. Furthermore, the formation of a p–n heterojunction substantially accelerates electron transport rates at the interfaces within the material. The 3DIO NiO-SnO2 sensor demonstrates a response value of 202 to 100 ppm of acetone, which is 12 times higher than that of the SnO2 sensor. Moreover, the 3DIO NiO-SnO2 sensor exhibits fast response kinetics to acetone. At the optimal operating temperature of 198.5 °C, the response time to acetone gas is only 3 s, along with excellent repeatability and long-term stability. This work offers novel insights into the design strategy for macroporous NiO-SnO2 nanomaterials, enabling high-performance quantitative detection in acetone gas sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信