高b值、高分辨率的先进显微结构成像,结合超高性能梯度扩散成像和基于模型的深度学习,通过3D多板采集进行演示。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Chu-Yu Lee, Reza Ghorbani, Mahsa Rajabi, Merry Mani
{"title":"高b值、高分辨率的先进显微结构成像,结合超高性能梯度扩散成像和基于模型的深度学习,通过3D多板采集进行演示。","authors":"Chu-Yu Lee, Reza Ghorbani, Mahsa Rajabi, Merry Mani","doi":"10.1002/mrm.70046","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To demonstrate the extended capabilities of 3D multi-slab diffusion-weighted acquisition (3D-msDWI) on high-performance gradients (HPG) to support advanced microstructure modeling for in-vivo human studies at high resolutions.</p><p><strong>Methods: </strong>Despite optimal SNR-efficiency, the application of 3D-msDWI has been limited by the long volume acquisition times (VAT) required for encoding the 3D k-space using multi-shot approaches. Substantial reduction of VAT is possible by employing optimized 3D k-space under-sampling methods. We demonstrate that with reduced VAT, 3D-msDWI can be successfully utilized for advanced brain microstructure modeling at high resolution. HPG systems (e.g., <math> <semantics><mrow><mo>></mo> <mn>200</mn></mrow> <annotation>$$ >200 $$</annotation></semantics> </math>  mT/m, <math> <semantics><mrow><mo>></mo> <mn>300</mn></mrow> <annotation>$$ >300 $$</annotation></semantics> </math>  T/m/s) enable further optimization through shorter echo times at high b-values. We evaluated the accelerated 3D-msDWI method's ability to support diffusion studies at 1mm isotropic resolution using data collected across three shells, with b-values extended up to 6000  <math> <semantics> <mrow> <msup><mrow><mtext>s/mm</mtext></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ \\mathrm{s}/{\\mathrm{mm}}^2 $$</annotation></semantics> </math> , and employing compartment models. The reconstruction employed a navigator-based, motion-compensated approach using a regularized, iterative model-based algorithm.</p><p><strong>Results: </strong>The accelerated 3D-msDWI framework enabled the generation of whole-brain parametric maps of a three-compartment model, at 1mm isotropic resolution, using a 3-shell, 66-direction acquisition completed in <math> <semantics><mrow><mo><</mo></mrow> <annotation>$$ < $$</annotation></semantics> </math> 15 min. The intra-axonal diffusivities (in <math> <semantics><mrow><mi>μ</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>/</mo> <mi>m</mi> <mi>s</mi></mrow> <annotation>$$ \\mu {m}^2/ ms $$</annotation></semantics> </math> ) and volume fractions reported from the method are as follows: 2.27 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.14; 0.6 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.04 in corpus-callosum, 2.17 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.09; 0.66 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.03 in anterior limb of internal capsule, 2.18 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.08; 0.68 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.04 in posterior limb of internal capsule, 2.07 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.06; 0.62 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.04 in corona radiata, 2.25 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.08; 0.68 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.04 in cortico-spinal tract, 2.12 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.04; 0.63 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\pm $$</annotation></semantics> </math> 0.05 in superior longitudinal fasciculus, with a coefficient of variation <math> <semantics><mrow><mo><</mo> <mn>10</mn></mrow> <annotation>$$ <10 $$</annotation></semantics> </math> % across subjects for all regions studied. The quantified values were validated using standard single-diffusion and multi-dimensional q-trajectory encoding acquisitions.</p><p><strong>Conclusion: </strong>The inherent optimal SNR-efficiency of the 3D-msDWI framework can be harnessed for whole-brain high-resolution advanced microstructure modeling for in-vivo human studies, using advanced hardware and reconstruction.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced microstructure imaging at high b-values and high resolution combining ultra-high performance gradient diffusion imaging and model-based deep learning demonstrated using 3D multi-slab acquisition.\",\"authors\":\"Chu-Yu Lee, Reza Ghorbani, Mahsa Rajabi, Merry Mani\",\"doi\":\"10.1002/mrm.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To demonstrate the extended capabilities of 3D multi-slab diffusion-weighted acquisition (3D-msDWI) on high-performance gradients (HPG) to support advanced microstructure modeling for in-vivo human studies at high resolutions.</p><p><strong>Methods: </strong>Despite optimal SNR-efficiency, the application of 3D-msDWI has been limited by the long volume acquisition times (VAT) required for encoding the 3D k-space using multi-shot approaches. Substantial reduction of VAT is possible by employing optimized 3D k-space under-sampling methods. We demonstrate that with reduced VAT, 3D-msDWI can be successfully utilized for advanced brain microstructure modeling at high resolution. HPG systems (e.g., <math> <semantics><mrow><mo>></mo> <mn>200</mn></mrow> <annotation>$$ >200 $$</annotation></semantics> </math>  mT/m, <math> <semantics><mrow><mo>></mo> <mn>300</mn></mrow> <annotation>$$ >300 $$</annotation></semantics> </math>  T/m/s) enable further optimization through shorter echo times at high b-values. We evaluated the accelerated 3D-msDWI method's ability to support diffusion studies at 1mm isotropic resolution using data collected across three shells, with b-values extended up to 6000  <math> <semantics> <mrow> <msup><mrow><mtext>s/mm</mtext></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ \\\\mathrm{s}/{\\\\mathrm{mm}}^2 $$</annotation></semantics> </math> , and employing compartment models. The reconstruction employed a navigator-based, motion-compensated approach using a regularized, iterative model-based algorithm.</p><p><strong>Results: </strong>The accelerated 3D-msDWI framework enabled the generation of whole-brain parametric maps of a three-compartment model, at 1mm isotropic resolution, using a 3-shell, 66-direction acquisition completed in <math> <semantics><mrow><mo><</mo></mrow> <annotation>$$ < $$</annotation></semantics> </math> 15 min. The intra-axonal diffusivities (in <math> <semantics><mrow><mi>μ</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>/</mo> <mi>m</mi> <mi>s</mi></mrow> <annotation>$$ \\\\mu {m}^2/ ms $$</annotation></semantics> </math> ) and volume fractions reported from the method are as follows: 2.27 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.14; 0.6 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.04 in corpus-callosum, 2.17 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.09; 0.66 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.03 in anterior limb of internal capsule, 2.18 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.08; 0.68 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.04 in posterior limb of internal capsule, 2.07 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.06; 0.62 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.04 in corona radiata, 2.25 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.08; 0.68 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.04 in cortico-spinal tract, 2.12 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.04; 0.63 <math> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \\\\pm $$</annotation></semantics> </math> 0.05 in superior longitudinal fasciculus, with a coefficient of variation <math> <semantics><mrow><mo><</mo> <mn>10</mn></mrow> <annotation>$$ <10 $$</annotation></semantics> </math> % across subjects for all regions studied. The quantified values were validated using standard single-diffusion and multi-dimensional q-trajectory encoding acquisitions.</p><p><strong>Conclusion: </strong>The inherent optimal SNR-efficiency of the 3D-msDWI framework can be harnessed for whole-brain high-resolution advanced microstructure modeling for in-vivo human studies, using advanced hardware and reconstruction.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.70046\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70046","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:展示高性能梯度(HPG)上三维多板扩散加权采集(3D- msdwi)的扩展功能,以支持高分辨率人体体内研究的高级微观结构建模。方法:尽管具有最佳的信噪比效率,但3D- msdwi的应用受到使用多镜头方法编码3D k空间所需的长体积采集时间(VAT)的限制。通过采用优化的3D k空间欠采样方法,可以大幅度降低增值税。我们证明,通过降低VAT, 3D-msDWI可以成功地用于高分辨率的高级大脑微观结构建模。HPG系统(例如,>200 $$ >200 $$ mT/m, >300 $$ >300 $$ T/m/s)通过缩短高b值的回波时间,可以进一步优化。我们评估了加速3D-msDWI方法在1mm各向同性分辨率下支持扩散研究的能力,使用三个炮弹收集的数据,b值扩展到6000s / mm2 $$ \ mathm {s}/{\ mathm {mm}}^2 $$,并采用隔室模型。重建采用基于导航,运动补偿的方法,使用正则化,迭代模型为基础的算法。结果:加速的3D-msDWI框架能够生成三室模型的全脑参数图,以1mm各向同性分辨率,使用3壳,66个方向采集,在$$ < $$ 15分钟内完成。轴突内扩散系数(μ m 2/ ms $$ \mu {m}^2/ ms $$ $)和体积分数分别为:2.27±$$ \pm $$ 0.14;胼胝体:0.6±$$ \pm $$ 0.04, 2.17±$$ \pm $$ 0.09;内囊前肢0.66±$$ \pm $$ 0.03, 2.18±$$ \pm $$ 0.08;后肢内囊0.68±$$ \pm $$ 0.04, 2.07±$$ \pm $$ 0.06;日冕辐射0.62±$$ \pm $$ 0.04, 2.25±$$ \pm $$ 0.08;皮质-脊髓束0.68±$$ \pm $$ 0.04, 2.12±$$ \pm $$ 0.04;上纵束0.63±$$ pm $$ 0.05,所有研究区域的受试者变异系数为10 $$ %。使用标准的单扩散和多维q-轨迹编码获取对量化值进行验证。结论:3D-msDWI框架固有的最佳信噪比效率可以利用先进的硬件和重建技术进行全脑高分辨率高级微观结构建模,用于人体体内研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced microstructure imaging at high b-values and high resolution combining ultra-high performance gradient diffusion imaging and model-based deep learning demonstrated using 3D multi-slab acquisition.

Purpose: To demonstrate the extended capabilities of 3D multi-slab diffusion-weighted acquisition (3D-msDWI) on high-performance gradients (HPG) to support advanced microstructure modeling for in-vivo human studies at high resolutions.

Methods: Despite optimal SNR-efficiency, the application of 3D-msDWI has been limited by the long volume acquisition times (VAT) required for encoding the 3D k-space using multi-shot approaches. Substantial reduction of VAT is possible by employing optimized 3D k-space under-sampling methods. We demonstrate that with reduced VAT, 3D-msDWI can be successfully utilized for advanced brain microstructure modeling at high resolution. HPG systems (e.g., > 200 $$ >200 $$  mT/m, > 300 $$ >300 $$  T/m/s) enable further optimization through shorter echo times at high b-values. We evaluated the accelerated 3D-msDWI method's ability to support diffusion studies at 1mm isotropic resolution using data collected across three shells, with b-values extended up to 6000  s/mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ , and employing compartment models. The reconstruction employed a navigator-based, motion-compensated approach using a regularized, iterative model-based algorithm.

Results: The accelerated 3D-msDWI framework enabled the generation of whole-brain parametric maps of a three-compartment model, at 1mm isotropic resolution, using a 3-shell, 66-direction acquisition completed in < $$ < $$ 15 min. The intra-axonal diffusivities (in μ m 2 / m s $$ \mu {m}^2/ ms $$ ) and volume fractions reported from the method are as follows: 2.27 ± $$ \pm $$ 0.14; 0.6 ± $$ \pm $$ 0.04 in corpus-callosum, 2.17 ± $$ \pm $$ 0.09; 0.66 ± $$ \pm $$ 0.03 in anterior limb of internal capsule, 2.18 ± $$ \pm $$ 0.08; 0.68 ± $$ \pm $$ 0.04 in posterior limb of internal capsule, 2.07 ± $$ \pm $$ 0.06; 0.62 ± $$ \pm $$ 0.04 in corona radiata, 2.25 ± $$ \pm $$ 0.08; 0.68 ± $$ \pm $$ 0.04 in cortico-spinal tract, 2.12 ± $$ \pm $$ 0.04; 0.63 ± $$ \pm $$ 0.05 in superior longitudinal fasciculus, with a coefficient of variation < 10 $$ <10 $$ % across subjects for all regions studied. The quantified values were validated using standard single-diffusion and multi-dimensional q-trajectory encoding acquisitions.

Conclusion: The inherent optimal SNR-efficiency of the 3D-msDWI framework can be harnessed for whole-brain high-resolution advanced microstructure modeling for in-vivo human studies, using advanced hardware and reconstruction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信