Taechang Kim, Sooyeon Ji, Kyeongseon Min, Minjun Kim, Jonghyo Youn, Chungseok Oh, Jiye Kim, Jongho Lee
{"title":"血管分割的χ $$ \\chi $$ -分离定量敏感性制图。","authors":"Taechang Kim, Sooyeon Ji, Kyeongseon Min, Minjun Kim, Jonghyo Youn, Chungseok Oh, Jiye Kim, Jongho Lee","doi":"10.1002/mrm.70054","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong><math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> -separation is an advanced quantitative susceptibility mapping (QSM) method that is designed to generate paramagnetic ( <math> <semantics> <mrow><msub><mi>χ</mi> <mtext>para</mtext></msub> </mrow> <annotation>$$ {\\chi}_{para} $$</annotation></semantics> </math> ) and diamagnetic ( <math> <semantics><mrow><mo>|</mo> <msub><mi>χ</mi> <mi>dia</mi></msub> <mo>|</mo></mrow> <annotation>$$ \\mid {\\chi}_{dia}\\mid $$</annotation></semantics> </math> ) susceptibility maps, reflecting the distribution of iron and myelin in the brain. However, vessels have shown artifacts, interfering with the accurate quantification of iron and myelin in applications. To address this challenge, a new vessel segmentation method for <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> -separation is developed.</p><p><strong>Methods: </strong>The method comprises three steps: (1) seed generation from <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> and the product of <math> <semantics> <mrow><msub><mi>χ</mi> <mtext>para</mtext></msub> </mrow> <annotation>$$ {\\chi}_{para} $$</annotation></semantics> </math> and <math> <semantics><mrow><mo>|</mo> <msub><mi>χ</mi> <mi>dia</mi></msub> <mo>|</mo></mrow> <annotation>$$ \\mid {\\chi}_{dia}\\mid $$</annotation></semantics> </math> maps; (2) region growing, guided by vessel geometry, creating a vessel mask; (3) refinement of the vessel mask by excluding non-vessel structures. The performance of the method was compared to other vessel segmentation methods both qualitatively and quantitatively. To demonstrate the utility of the method, it was tested in two applications: quantitative evaluation of a neural network-based <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> -separation reconstruction method ( <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> -sepnet- <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> ) and population-averaged region of interest (ROI) analysis.</p><p><strong>Results: </strong>The proposed method demonstrates superior performance to other vessel segmentation methods, effectively excluding the non-vessel structures, achieving the highest Dice score coefficient against manually segmented vessel masks (3 T: 76.7% for <math> <semantics> <mrow><msub><mi>χ</mi> <mtext>para</mtext></msub> </mrow> <annotation>$$ {\\chi}_{para} $$</annotation></semantics> </math> and 68.7% for <math> <semantics><mrow><mo>|</mo> <msub><mi>χ</mi> <mi>dia</mi></msub> <mo>|</mo></mrow> <annotation>$$ \\mid {\\chi}_{dia}\\mid $$</annotation></semantics> </math> , 7 T: 76.9% for <math> <semantics> <mrow><msub><mi>χ</mi> <mtext>para</mtext></msub> </mrow> <annotation>$$ {\\chi}_{para} $$</annotation></semantics> </math> and 72.6% for <math> <semantics><mrow><mo>|</mo> <msub><mi>χ</mi> <mi>dia</mi></msub> <mo>|</mo></mrow> <annotation>$$ \\mid {\\chi}_{dia}\\mid $$</annotation></semantics> </math> ). For the applications, applying vessel masks report notable improvements for the quantitative evaluation of <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> -sepnet- <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> and statistically significant differences in population-averaged ROI analysis. These applications suggest excluding vessels when analyzing the <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> -separation maps provide more accurate evaluations.</p><p><strong>Conclusion: </strong>The proposed method has the potential to facilitate various applications, offering reliable analysis through the generation of a high-quality vessel mask.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Vessel segmentation for <ns0:math> <ns0:semantics><ns0:mrow><ns0:mi>χ</ns0:mi></ns0:mrow> <ns0:annotation>$$ \\\\chi $$</ns0:annotation></ns0:semantics> </ns0:math> -separation in quantitative susceptibility mapping.\",\"authors\":\"Taechang Kim, Sooyeon Ji, Kyeongseon Min, Minjun Kim, Jonghyo Youn, Chungseok Oh, Jiye Kim, Jongho Lee\",\"doi\":\"10.1002/mrm.70054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong><math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\\\chi $$</annotation></semantics> </math> -separation is an advanced quantitative susceptibility mapping (QSM) method that is designed to generate paramagnetic ( <math> <semantics> <mrow><msub><mi>χ</mi> <mtext>para</mtext></msub> </mrow> <annotation>$$ {\\\\chi}_{para} $$</annotation></semantics> </math> ) and diamagnetic ( <math> <semantics><mrow><mo>|</mo> <msub><mi>χ</mi> <mi>dia</mi></msub> <mo>|</mo></mrow> <annotation>$$ \\\\mid {\\\\chi}_{dia}\\\\mid $$</annotation></semantics> </math> ) susceptibility maps, reflecting the distribution of iron and myelin in the brain. However, vessels have shown artifacts, interfering with the accurate quantification of iron and myelin in applications. To address this challenge, a new vessel segmentation method for <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\\\chi $$</annotation></semantics> </math> -separation is developed.</p><p><strong>Methods: </strong>The method comprises three steps: (1) seed generation from <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> and the product of <math> <semantics> <mrow><msub><mi>χ</mi> <mtext>para</mtext></msub> </mrow> <annotation>$$ {\\\\chi}_{para} $$</annotation></semantics> </math> and <math> <semantics><mrow><mo>|</mo> <msub><mi>χ</mi> <mi>dia</mi></msub> <mo>|</mo></mrow> <annotation>$$ \\\\mid {\\\\chi}_{dia}\\\\mid $$</annotation></semantics> </math> maps; (2) region growing, guided by vessel geometry, creating a vessel mask; (3) refinement of the vessel mask by excluding non-vessel structures. The performance of the method was compared to other vessel segmentation methods both qualitatively and quantitatively. To demonstrate the utility of the method, it was tested in two applications: quantitative evaluation of a neural network-based <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\\\chi $$</annotation></semantics> </math> -separation reconstruction method ( <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\\\chi $$</annotation></semantics> </math> -sepnet- <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> ) and population-averaged region of interest (ROI) analysis.</p><p><strong>Results: </strong>The proposed method demonstrates superior performance to other vessel segmentation methods, effectively excluding the non-vessel structures, achieving the highest Dice score coefficient against manually segmented vessel masks (3 T: 76.7% for <math> <semantics> <mrow><msub><mi>χ</mi> <mtext>para</mtext></msub> </mrow> <annotation>$$ {\\\\chi}_{para} $$</annotation></semantics> </math> and 68.7% for <math> <semantics><mrow><mo>|</mo> <msub><mi>χ</mi> <mi>dia</mi></msub> <mo>|</mo></mrow> <annotation>$$ \\\\mid {\\\\chi}_{dia}\\\\mid $$</annotation></semantics> </math> , 7 T: 76.9% for <math> <semantics> <mrow><msub><mi>χ</mi> <mtext>para</mtext></msub> </mrow> <annotation>$$ {\\\\chi}_{para} $$</annotation></semantics> </math> and 72.6% for <math> <semantics><mrow><mo>|</mo> <msub><mi>χ</mi> <mi>dia</mi></msub> <mo>|</mo></mrow> <annotation>$$ \\\\mid {\\\\chi}_{dia}\\\\mid $$</annotation></semantics> </math> ). For the applications, applying vessel masks report notable improvements for the quantitative evaluation of <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\\\chi $$</annotation></semantics> </math> -sepnet- <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> and statistically significant differences in population-averaged ROI analysis. These applications suggest excluding vessels when analyzing the <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\\\chi $$</annotation></semantics> </math> -separation maps provide more accurate evaluations.</p><p><strong>Conclusion: </strong>The proposed method has the potential to facilitate various applications, offering reliable analysis through the generation of a high-quality vessel mask.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.70054\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的:χ $$ \chi $$ -分离法是一种先进的定量敏感性图谱(QSM)方法,旨在生成顺磁(χ para $$ {\chi}_{para} $$)和反磁(| χ dia | $$ \mid {\chi}_{dia}\mid $$)敏感性图谱,反映铁和髓磷脂在大脑中的分布。然而,血管显示伪影,干扰应用中铁和髓磷脂的准确定量。为了解决这一挑战,开发了一种新的用于χ $$ \chi $$分离的血管分割方法。方法:该方法分为三个步骤:(1)从r2 * $$ {R}_2^{\ast } $$和χ para $$ {\chi}_{para} $$与| χ dia | $$ \mid {\chi}_{dia}\mid $$图谱的乘积进行种子生成;(2)区域生长,由容器几何形状引导,创建容器掩模;(3)通过排除非容器结构来细化容器掩模。将该方法与其他血管分割方法进行定性和定量比较。为了证明该方法的实用性,在两个应用中对其进行了测试:基于神经网络的χ $$ \chi $$ -分离重建方法(χ $$ \chi $$ -sepnet- r2 * $$ {R}_2^{\ast } $$)的定量评估和总体平均感兴趣区域(ROI)分析。结果:与其他血管分割方法相比,本文提出的方法表现出优越的性能,有效地排除了非血管结构,在人工分割血管掩模时获得了最高的Dice得分系数(3 T: 76.7)% for χ para $$ {\chi}_{para} $$ and 68.7% for | χ dia | $$ \mid {\chi}_{dia}\mid $$ , 7 T: 76.9% for χ para $$ {\chi}_{para} $$ and 72.6% for | χ dia | $$ \mid {\chi}_{dia}\mid $$ ). For the applications, applying vessel masks report notable improvements for the quantitative evaluation of χ $$ \chi $$ -sepnet- R 2 * $$ {R}_2^{\ast } $$ and statistically significant differences in population-averaged ROI analysis. These applications suggest excluding vessels when analyzing the χ $$ \chi $$ -separation maps provide more accurate evaluations.Conclusion: The proposed method has the potential to facilitate various applications, offering reliable analysis through the generation of a high-quality vessel mask.
Vessel segmentation for χ$$ \chi $$ -separation in quantitative susceptibility mapping.
Purpose: -separation is an advanced quantitative susceptibility mapping (QSM) method that is designed to generate paramagnetic ( ) and diamagnetic ( ) susceptibility maps, reflecting the distribution of iron and myelin in the brain. However, vessels have shown artifacts, interfering with the accurate quantification of iron and myelin in applications. To address this challenge, a new vessel segmentation method for -separation is developed.
Methods: The method comprises three steps: (1) seed generation from and the product of and maps; (2) region growing, guided by vessel geometry, creating a vessel mask; (3) refinement of the vessel mask by excluding non-vessel structures. The performance of the method was compared to other vessel segmentation methods both qualitatively and quantitatively. To demonstrate the utility of the method, it was tested in two applications: quantitative evaluation of a neural network-based -separation reconstruction method ( -sepnet- ) and population-averaged region of interest (ROI) analysis.
Results: The proposed method demonstrates superior performance to other vessel segmentation methods, effectively excluding the non-vessel structures, achieving the highest Dice score coefficient against manually segmented vessel masks (3 T: 76.7% for and 68.7% for , 7 T: 76.9% for and 72.6% for ). For the applications, applying vessel masks report notable improvements for the quantitative evaluation of -sepnet- and statistically significant differences in population-averaged ROI analysis. These applications suggest excluding vessels when analyzing the -separation maps provide more accurate evaluations.
Conclusion: The proposed method has the potential to facilitate various applications, offering reliable analysis through the generation of a high-quality vessel mask.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.