运动鲁棒t2 * $$ {\mathrm{T}}_2^{\ast } $$从低分辨率梯度回波脑MRI与物理信息深度学习量化。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Lina Felsner, Kilian Weiss, Christine Preibisch, Julia A Schnabel
{"title":"运动鲁棒t2 * $$ {\\mathrm{T}}_2^{\\ast } $$从低分辨率梯度回波脑MRI与物理信息深度学习量化。","authors":"Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Lina Felsner, Kilian Weiss, Christine Preibisch, Julia A Schnabel","doi":"10.1002/mrm.70050","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong><math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\mathrm{T}}_2^{\\ast } $$</annotation></semantics> </math> quantification from gradient echo magnetic resonance imaging is particularly affected by subject motion due to its high sensitivity to magnetic field inhomogeneities, which are influenced by motion and might cause signal loss. Thus, motion correction is crucial to obtain high-quality <math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\mathrm{T}}_2^{\\ast } $$</annotation></semantics> </math> maps.</p><p><strong>Methods: </strong>We extend PHIMO, our previously introduced learning-based physics-informed motion correction method for low-resolution <math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\mathrm{T}}_2^{\\ast } $$</annotation></semantics> </math> mapping. Our extended version, PHIMO+, utilizes acquisition knowledge to enhance the reconstruction performance for challenging motion patterns and increase PHIMO's robustness to varying strengths of magnetic field inhomogeneities across the brain. We perform comprehensive evaluations regarding motion detection accuracy and image quality for data with simulated and real motion.</p><p><strong>Results: </strong>PHIMO+ outperforms the learning-based baseline methods both qualitatively and quantitatively with respect to line detection and image quality. Moreover, PHIMO+ performs on par with a conventional state-of-the-art motion correction method for <math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\mathrm{T}}_2^{\\ast } $$</annotation></semantics> </math> quantification from gradient echo MRI, which relies on redundant data acquisition.</p><p><strong>Conclusion: </strong>PHIMO+'s competitive motion correction performance, combined with a reduction in acquisition time by over 40% compared to the state-of-the-art method, makes it a promising solution for motion-robust <math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\mathrm{T}}_2^{\\ast } $$</annotation></semantics> </math> quantification in research settings and clinical routine.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Motion-robust <ns0:math> <ns0:semantics> <ns0:mrow> <ns0:msubsup><ns0:mrow><ns0:mi>T</ns0:mi></ns0:mrow> <ns0:mrow><ns0:mn>2</ns0:mn></ns0:mrow> <ns0:mrow><ns0:mo>∗</ns0:mo></ns0:mrow> </ns0:msubsup> </ns0:mrow> <ns0:annotation>$$ {\\\\mathrm{T}}_2^{\\\\ast } $$</ns0:annotation></ns0:semantics> </ns0:math> quantification from low-resolution gradient echo brain MRI with physics-informed deep learning.\",\"authors\":\"Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Lina Felsner, Kilian Weiss, Christine Preibisch, Julia A Schnabel\",\"doi\":\"10.1002/mrm.70050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong><math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\\\mathrm{T}}_2^{\\\\ast } $$</annotation></semantics> </math> quantification from gradient echo magnetic resonance imaging is particularly affected by subject motion due to its high sensitivity to magnetic field inhomogeneities, which are influenced by motion and might cause signal loss. Thus, motion correction is crucial to obtain high-quality <math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\\\mathrm{T}}_2^{\\\\ast } $$</annotation></semantics> </math> maps.</p><p><strong>Methods: </strong>We extend PHIMO, our previously introduced learning-based physics-informed motion correction method for low-resolution <math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\\\mathrm{T}}_2^{\\\\ast } $$</annotation></semantics> </math> mapping. Our extended version, PHIMO+, utilizes acquisition knowledge to enhance the reconstruction performance for challenging motion patterns and increase PHIMO's robustness to varying strengths of magnetic field inhomogeneities across the brain. We perform comprehensive evaluations regarding motion detection accuracy and image quality for data with simulated and real motion.</p><p><strong>Results: </strong>PHIMO+ outperforms the learning-based baseline methods both qualitatively and quantitatively with respect to line detection and image quality. Moreover, PHIMO+ performs on par with a conventional state-of-the-art motion correction method for <math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\\\mathrm{T}}_2^{\\\\ast } $$</annotation></semantics> </math> quantification from gradient echo MRI, which relies on redundant data acquisition.</p><p><strong>Conclusion: </strong>PHIMO+'s competitive motion correction performance, combined with a reduction in acquisition time by over 40% compared to the state-of-the-art method, makes it a promising solution for motion-robust <math> <semantics> <mrow> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {\\\\mathrm{T}}_2^{\\\\ast } $$</annotation></semantics> </math> quantification in research settings and clinical routine.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.70050\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70050","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:t2 * $$ {\mathrm{T}}_2^{\ast } $$梯度回波磁共振成像的量化特别受受试者运动的影响,因为它对磁场不均匀性的高灵敏度,而磁场不均匀性受运动的影响并可能导致信号损失。因此,运动校正对于获得高质量的t2 * $$ {\mathrm{T}}_2^{\ast } $$地图至关重要。方法:我们扩展了PHIMO,我们之前介绍的基于学习的物理信息运动校正方法,用于低分辨率t2∗$$ {\mathrm{T}}_2^{\ast } $$映射。我们的扩展版本,PHIMO+,利用获取知识来增强具有挑战性的运动模式的重建性能,并增加PHIMO对大脑中不同强度的磁场不均匀性的鲁棒性。我们对模拟和真实运动数据的运动检测精度和图像质量进行全面评估。结果:PHIMO+在线检测和图像质量方面的定性和定量上都优于基于学习的基线方法。此外,PHIMO+的表现与传统的最先进的运动校正方法相当,用于梯度回波MRI的t2 * $$ {\mathrm{T}}_2^{\ast } $$量化,这依赖于冗余数据采集。结论:PHIMO+具有竞争性运动矫正性能,同时可减少超过40%的采集时间% compared to the state-of-the-art method, makes it a promising solution for motion-robust T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ quantification in research settings and clinical routine.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion-robust T 2 $$ {\mathrm{T}}_2^{\ast } $$ quantification from low-resolution gradient echo brain MRI with physics-informed deep learning.

Purpose: T 2 $$ {\mathrm{T}}_2^{\ast } $$ quantification from gradient echo magnetic resonance imaging is particularly affected by subject motion due to its high sensitivity to magnetic field inhomogeneities, which are influenced by motion and might cause signal loss. Thus, motion correction is crucial to obtain high-quality T 2 $$ {\mathrm{T}}_2^{\ast } $$ maps.

Methods: We extend PHIMO, our previously introduced learning-based physics-informed motion correction method for low-resolution T 2 $$ {\mathrm{T}}_2^{\ast } $$ mapping. Our extended version, PHIMO+, utilizes acquisition knowledge to enhance the reconstruction performance for challenging motion patterns and increase PHIMO's robustness to varying strengths of magnetic field inhomogeneities across the brain. We perform comprehensive evaluations regarding motion detection accuracy and image quality for data with simulated and real motion.

Results: PHIMO+ outperforms the learning-based baseline methods both qualitatively and quantitatively with respect to line detection and image quality. Moreover, PHIMO+ performs on par with a conventional state-of-the-art motion correction method for T 2 $$ {\mathrm{T}}_2^{\ast } $$ quantification from gradient echo MRI, which relies on redundant data acquisition.

Conclusion: PHIMO+'s competitive motion correction performance, combined with a reduction in acquisition time by over 40% compared to the state-of-the-art method, makes it a promising solution for motion-robust T 2 $$ {\mathrm{T}}_2^{\ast } $$ quantification in research settings and clinical routine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信