Sam Coveney, Maryam Afzali, Lars Mueller, Irvin Teh, Filip Szczepankiewicz, Derek K Jones, Jürgen E Schneider
{"title":"鲁棒约束加权最小二乘在体人体心脏弥散峰度成像。","authors":"Sam Coveney, Maryam Afzali, Lars Mueller, Irvin Teh, Filip Szczepankiewicz, Derek K Jones, Jürgen E Schneider","doi":"10.1002/mrm.70037","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cardiac diffusion tensor imaging (cDTI) can investigate the microstructure of heart tissue. At sufficiently high b-values, additional information on microstructure can be observed, but the data require a representation such as diffusion kurtosis imaging (DKI). cDTI is prone to image corruption, which is usually treated with shot rejection but which can be handled more generally with robust estimation. Unconstrained fitting allows DKI parameters to violate necessary constraints on signal behavior, causing errors in diffusion and kurtosis measures.</p><p><strong>Methods: </strong>We developed robust constrained weighted least squares (RCWLS) specifically for DKI. Using in vivo cardiac DKI data from 11 healthy volunteers collected with a Connectom scanner up to b-value <math> <semantics><mrow><mn>1350</mn> <mspace></mspace> <mi>s</mi> <mo>/</mo> <mi>m</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ 1350\\kern0.3em \\mathrm{s}/\\mathrm{m}{\\mathrm{m}}^2 $$</annotation></semantics> </math> , we compared fitting techniques with/without robustness and with/without constraints.</p><p><strong>Results: </strong>Constraints, but not robustness, made a significant difference on all measures. Robust fitting corrected large errors for some subjects. RCWLS was the only technique that showed radial kurtosis to be larger than axial kurtosis for all subjects, which is expected in myocardium due to increased restrictions to diffusion perpendicular to the primary myocyte direction. For <math> <semantics><mrow><mi>b</mi> <mo>=</mo> <mn>1350</mn> <mspace></mspace> <mi>s</mi> <mo>/</mo> <mi>m</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ b=1350\\kern0.3em \\mathrm{s}/\\mathrm{m}{\\mathrm{m}}^2 $$</annotation></semantics> </math> , RCWLS gave the following measures across subjects: mean diffusivity (MD) <math> <semantics><mrow><mn>1</mn> <mo>.</mo> <mn>68</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>050</mn> <mspace></mspace> <mo>×</mo> <mn>1</mn> <msup><mrow><mn>0</mn></mrow> <mrow><mo>-</mo> <mn>3</mn></mrow> </msup> <msup><mrow><mtext>mm</mtext></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>/</mo> <mi>s</mi></mrow> <annotation>$$ 1.68\\pm 0.050\\kern3.0235pt \\times 1{0}^{-3}{\\mathrm{mm}}^2/\\mathrm{s} $$</annotation></semantics> </math> , fractional anisotropy (FA) <math> <semantics><mrow><mn>0</mn> <mo>.</mo> <mn>30</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>013</mn></mrow> <annotation>$$ 0.30\\pm 0.013 $$</annotation></semantics> </math> , mean kurtosis (MK) <math> <semantics><mrow><mn>0</mn> <mo>.</mo> <mn>36</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>027</mn></mrow> <annotation>$$ 0.36\\pm 0.027 $$</annotation></semantics> </math> , axial kurtosis (AK) <math> <semantics><mrow><mn>0</mn> <mo>.</mo> <mn>26</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>027</mn></mrow> <annotation>$$ 0.26\\pm 0.027 $$</annotation></semantics> </math> , radial kurtosis (RK) <math> <semantics><mrow><mn>0</mn> <mo>.</mo> <mn>42</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>040</mn></mrow> <annotation>$$ 0.42\\pm 0.040 $$</annotation></semantics> </math> , and RK/AK <math> <semantics><mrow><mn>1</mn> <mo>.</mo> <mn>65</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>19</mn></mrow> <annotation>$$ 1.65\\pm 0.19 $$</annotation></semantics> </math> .</p><p><strong>Conclusion: </strong>Fitting techniques utilizing both robust estimation and convexity constraints, such as RCWLS, are essential to obtain robust and feasible diffusion and kurtosis measures from in vivo cardiac DKI.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust constrained weighted least squares for in vivo human cardiac diffusion kurtosis imaging.\",\"authors\":\"Sam Coveney, Maryam Afzali, Lars Mueller, Irvin Teh, Filip Szczepankiewicz, Derek K Jones, Jürgen E Schneider\",\"doi\":\"10.1002/mrm.70037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Cardiac diffusion tensor imaging (cDTI) can investigate the microstructure of heart tissue. At sufficiently high b-values, additional information on microstructure can be observed, but the data require a representation such as diffusion kurtosis imaging (DKI). cDTI is prone to image corruption, which is usually treated with shot rejection but which can be handled more generally with robust estimation. Unconstrained fitting allows DKI parameters to violate necessary constraints on signal behavior, causing errors in diffusion and kurtosis measures.</p><p><strong>Methods: </strong>We developed robust constrained weighted least squares (RCWLS) specifically for DKI. Using in vivo cardiac DKI data from 11 healthy volunteers collected with a Connectom scanner up to b-value <math> <semantics><mrow><mn>1350</mn> <mspace></mspace> <mi>s</mi> <mo>/</mo> <mi>m</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ 1350\\\\kern0.3em \\\\mathrm{s}/\\\\mathrm{m}{\\\\mathrm{m}}^2 $$</annotation></semantics> </math> , we compared fitting techniques with/without robustness and with/without constraints.</p><p><strong>Results: </strong>Constraints, but not robustness, made a significant difference on all measures. Robust fitting corrected large errors for some subjects. RCWLS was the only technique that showed radial kurtosis to be larger than axial kurtosis for all subjects, which is expected in myocardium due to increased restrictions to diffusion perpendicular to the primary myocyte direction. For <math> <semantics><mrow><mi>b</mi> <mo>=</mo> <mn>1350</mn> <mspace></mspace> <mi>s</mi> <mo>/</mo> <mi>m</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ b=1350\\\\kern0.3em \\\\mathrm{s}/\\\\mathrm{m}{\\\\mathrm{m}}^2 $$</annotation></semantics> </math> , RCWLS gave the following measures across subjects: mean diffusivity (MD) <math> <semantics><mrow><mn>1</mn> <mo>.</mo> <mn>68</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>050</mn> <mspace></mspace> <mo>×</mo> <mn>1</mn> <msup><mrow><mn>0</mn></mrow> <mrow><mo>-</mo> <mn>3</mn></mrow> </msup> <msup><mrow><mtext>mm</mtext></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>/</mo> <mi>s</mi></mrow> <annotation>$$ 1.68\\\\pm 0.050\\\\kern3.0235pt \\\\times 1{0}^{-3}{\\\\mathrm{mm}}^2/\\\\mathrm{s} $$</annotation></semantics> </math> , fractional anisotropy (FA) <math> <semantics><mrow><mn>0</mn> <mo>.</mo> <mn>30</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>013</mn></mrow> <annotation>$$ 0.30\\\\pm 0.013 $$</annotation></semantics> </math> , mean kurtosis (MK) <math> <semantics><mrow><mn>0</mn> <mo>.</mo> <mn>36</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>027</mn></mrow> <annotation>$$ 0.36\\\\pm 0.027 $$</annotation></semantics> </math> , axial kurtosis (AK) <math> <semantics><mrow><mn>0</mn> <mo>.</mo> <mn>26</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>027</mn></mrow> <annotation>$$ 0.26\\\\pm 0.027 $$</annotation></semantics> </math> , radial kurtosis (RK) <math> <semantics><mrow><mn>0</mn> <mo>.</mo> <mn>42</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>040</mn></mrow> <annotation>$$ 0.42\\\\pm 0.040 $$</annotation></semantics> </math> , and RK/AK <math> <semantics><mrow><mn>1</mn> <mo>.</mo> <mn>65</mn> <mo>±</mo> <mn>0</mn> <mo>.</mo> <mn>19</mn></mrow> <annotation>$$ 1.65\\\\pm 0.19 $$</annotation></semantics> </math> .</p><p><strong>Conclusion: </strong>Fitting techniques utilizing both robust estimation and convexity constraints, such as RCWLS, are essential to obtain robust and feasible diffusion and kurtosis measures from in vivo cardiac DKI.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.70037\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70037","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的:心脏弥散张量成像(cDTI)可以观察心脏组织的微观结构。在足够高的b值下,可以观察到有关微观结构的附加信息,但这些数据需要扩散峰度成像(DKI)等表示。cDTI容易产生图像损坏,通常用镜头拒绝处理,但通常可以用鲁棒估计来处理。无约束拟合允许DKI参数违反信号行为的必要约束,导致扩散和峰度测量误差。方法:我们专门为DKI开发了鲁棒约束加权最小二乘(RCWLS)。使用Connectom扫描仪收集的11名健康志愿者的体内心脏DKI数据,b值高达1350 s / m / m 2 $$ 1350\kern0.3em \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$,我们比较了具有/不具有鲁棒性和具有/不具有约束的拟合技术。结果:约束,但不是稳健性,在所有测量上都有显著差异。稳健拟合修正了一些受试者的较大误差。RCWLS是唯一显示所有受试者的径向峰度大于轴向峰度的技术,这在心肌中是预期的,因为垂直于原代心肌细胞方向的扩散增加了限制。当b = 1350 s / m 2 $$ b=1350\kern0.3em \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$时,RCWLS给出了受试者的以下测量:平均扩散系数(MD) 1。68±0。050 × 10 - 3mm2 / s $$ 1.68\pm 0.050\kern3.0235pt \times 1{0}^{-3}{\mathrm{mm}}^2/\mathrm{s} $$,分数各向异性(FA) 0。30±0。013 $$ 0.30\pm 0.013 $$,平均峰度(MK) 0。36±0。027 $$ 0.36\pm 0.027 $$,轴向峰度(AK) 0。26±0。027 $$ 0.26\pm 0.027 $$,径向峰度(RK) 0。42±0。040 $$ 0.42\pm 0.040 $$, RK/AK 1。65±0。19 $$ 1.65\pm 0.19 $$。结论:利用鲁棒估计和凸性约束的拟合技术,如RCWLS,对于从体内心脏DKI获得鲁棒和可行的扩散和峰度测量是必不可少的。
Robust constrained weighted least squares for in vivo human cardiac diffusion kurtosis imaging.
Purpose: Cardiac diffusion tensor imaging (cDTI) can investigate the microstructure of heart tissue. At sufficiently high b-values, additional information on microstructure can be observed, but the data require a representation such as diffusion kurtosis imaging (DKI). cDTI is prone to image corruption, which is usually treated with shot rejection but which can be handled more generally with robust estimation. Unconstrained fitting allows DKI parameters to violate necessary constraints on signal behavior, causing errors in diffusion and kurtosis measures.
Methods: We developed robust constrained weighted least squares (RCWLS) specifically for DKI. Using in vivo cardiac DKI data from 11 healthy volunteers collected with a Connectom scanner up to b-value , we compared fitting techniques with/without robustness and with/without constraints.
Results: Constraints, but not robustness, made a significant difference on all measures. Robust fitting corrected large errors for some subjects. RCWLS was the only technique that showed radial kurtosis to be larger than axial kurtosis for all subjects, which is expected in myocardium due to increased restrictions to diffusion perpendicular to the primary myocyte direction. For , RCWLS gave the following measures across subjects: mean diffusivity (MD) , fractional anisotropy (FA) , mean kurtosis (MK) , axial kurtosis (AK) , radial kurtosis (RK) , and RK/AK .
Conclusion: Fitting techniques utilizing both robust estimation and convexity constraints, such as RCWLS, are essential to obtain robust and feasible diffusion and kurtosis measures from in vivo cardiac DKI.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.