Liya Wei, Zizhan Li, Niannian Zhong, Leiming Cao, Guangrui Wang, Yao Xiao, Bo Cai, Bing Liu, Linlin Bu
{"title":"淋巴结转移研究的临床前模型。","authors":"Liya Wei, Zizhan Li, Niannian Zhong, Leiming Cao, Guangrui Wang, Yao Xiao, Bo Cai, Bing Liu, Linlin Bu","doi":"10.1631/jzus.B2400052","DOIUrl":null,"url":null,"abstract":"<p><p>Lymph node metastasis (LNM) is a crucial risk factor influencing an unfavorable prognosis in specific cancers. Fundamental research illuminates our understanding of tumor behavior and identifies valuable therapeutic targets. Nevertheless, the exploration of fundamental theories and the validation of clinical therapies hinge on preclinical experiments. Preclinical models, in this context, serve as the conduit connecting fundamental theories to clinical outcomes. In vivo models established in animals offer a valuable platform for comprehensively observing interactions between tumor cells and organisms. Using various experimental animals, including mice, diverse methods, such as carcinogen-induced tumorigenesis, tumor cell line or human tumor transplantation, genetic engineering, and humanization, have been used effectively to construct numerous models for tumor LNM. Carcinogen-induced models simulate the entire process of tumorigenesis and metastasis. Transplantation models, using human tumor cell lines or patient-derived tumors, offer a research platform closely mirroring the histology and clinical behavior of human tumors. Genetically engineered models have been used to delve into the mechanisms of primary tumorigenesis within an intact microenvironment. Humanized models are used to overcome barriers between human and murine immune systems. Beyond mouse models, various other animal models have unique advantages and limitations, all contributing to exploring LNM. This review summarizes existing in vitro and animal preclinical models, identifies current bottlenecks in preclinical research, and offers an outlook on forthcoming preclinical models.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 8","pages":"740-762"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390389/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preclinical models in the study of lymph node metastasis.\",\"authors\":\"Liya Wei, Zizhan Li, Niannian Zhong, Leiming Cao, Guangrui Wang, Yao Xiao, Bo Cai, Bing Liu, Linlin Bu\",\"doi\":\"10.1631/jzus.B2400052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lymph node metastasis (LNM) is a crucial risk factor influencing an unfavorable prognosis in specific cancers. Fundamental research illuminates our understanding of tumor behavior and identifies valuable therapeutic targets. Nevertheless, the exploration of fundamental theories and the validation of clinical therapies hinge on preclinical experiments. Preclinical models, in this context, serve as the conduit connecting fundamental theories to clinical outcomes. In vivo models established in animals offer a valuable platform for comprehensively observing interactions between tumor cells and organisms. Using various experimental animals, including mice, diverse methods, such as carcinogen-induced tumorigenesis, tumor cell line or human tumor transplantation, genetic engineering, and humanization, have been used effectively to construct numerous models for tumor LNM. Carcinogen-induced models simulate the entire process of tumorigenesis and metastasis. Transplantation models, using human tumor cell lines or patient-derived tumors, offer a research platform closely mirroring the histology and clinical behavior of human tumors. Genetically engineered models have been used to delve into the mechanisms of primary tumorigenesis within an intact microenvironment. Humanized models are used to overcome barriers between human and murine immune systems. Beyond mouse models, various other animal models have unique advantages and limitations, all contributing to exploring LNM. This review summarizes existing in vitro and animal preclinical models, identifies current bottlenecks in preclinical research, and offers an outlook on forthcoming preclinical models.</p>\",\"PeriodicalId\":17797,\"journal\":{\"name\":\"Journal of Zhejiang University SCIENCE B\",\"volume\":\"26 8\",\"pages\":\"740-762\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University SCIENCE B\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.B2400052\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2400052","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Preclinical models in the study of lymph node metastasis.
Lymph node metastasis (LNM) is a crucial risk factor influencing an unfavorable prognosis in specific cancers. Fundamental research illuminates our understanding of tumor behavior and identifies valuable therapeutic targets. Nevertheless, the exploration of fundamental theories and the validation of clinical therapies hinge on preclinical experiments. Preclinical models, in this context, serve as the conduit connecting fundamental theories to clinical outcomes. In vivo models established in animals offer a valuable platform for comprehensively observing interactions between tumor cells and organisms. Using various experimental animals, including mice, diverse methods, such as carcinogen-induced tumorigenesis, tumor cell line or human tumor transplantation, genetic engineering, and humanization, have been used effectively to construct numerous models for tumor LNM. Carcinogen-induced models simulate the entire process of tumorigenesis and metastasis. Transplantation models, using human tumor cell lines or patient-derived tumors, offer a research platform closely mirroring the histology and clinical behavior of human tumors. Genetically engineered models have been used to delve into the mechanisms of primary tumorigenesis within an intact microenvironment. Humanized models are used to overcome barriers between human and murine immune systems. Beyond mouse models, various other animal models have unique advantages and limitations, all contributing to exploring LNM. This review summarizes existing in vitro and animal preclinical models, identifies current bottlenecks in preclinical research, and offers an outlook on forthcoming preclinical models.
期刊介绍:
Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community.
JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.