利用应力-应变指数图评估角膜交联:一项有限元研究。

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-08-01 Epub Date: 2025-08-27 DOI:10.1098/rsif.2025.0234
Chenyan Wang, Yuanwan Lou, Yabo Ye, Shuiyang Shen, Fangjun Bao, Junjie Wang, Ahmed Elsheikh
{"title":"利用应力-应变指数图评估角膜交联:一项有限元研究。","authors":"Chenyan Wang, Yuanwan Lou, Yabo Ye, Shuiyang Shen, Fangjun Bao, Junjie Wang, Ahmed Elsheikh","doi":"10.1098/rsif.2025.0234","DOIUrl":null,"url":null,"abstract":"<p><p>Keratoconus (KC) is a progressive corneal ectasia leading to visual impairment if untreated. Corneal collagen cross-linking (CXL) is an effective treatment to halt KC progression by strengthening corneal biomechanics. However, current CXL treatments lack customization based on regional corneal stiffness, which is crucial for optimal outcomes. This study introduces a novel approach using Stress-Strain Index (SSI) maps to evaluate localized CXL effects on corneal biomechanics. Numerical modelling based on the finite element method was used to carry out inverse analysis of the human eye to simulate KC and CXL treatments, incorporating regional stiffness variations based on collagen fibril density. SSI maps were generated pre- and post-CXL to assess stiffness changes in treated regions. Results demonstrated that CXL increased corneal stiffness within the treated area, but the extent of stiffness recovery varied with CXL diameter and alignment with the KC cone. Smaller CXL diameters led to higher localized stiffness increases, while misalignment between CXL and KC areas resulted in suboptimal biomechanical restoration. The study highlights the potential of SSI mapping for personalized CXL treatments, enabling precise targeting of biomechanically weakened regions to restore corneal health. This approach contributes to the development of biomechanics-based customization of CXL therapies.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 229","pages":"20250234"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380491/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating corneal cross-linking using Stress-Strain Index maps: a finite element study.\",\"authors\":\"Chenyan Wang, Yuanwan Lou, Yabo Ye, Shuiyang Shen, Fangjun Bao, Junjie Wang, Ahmed Elsheikh\",\"doi\":\"10.1098/rsif.2025.0234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Keratoconus (KC) is a progressive corneal ectasia leading to visual impairment if untreated. Corneal collagen cross-linking (CXL) is an effective treatment to halt KC progression by strengthening corneal biomechanics. However, current CXL treatments lack customization based on regional corneal stiffness, which is crucial for optimal outcomes. This study introduces a novel approach using Stress-Strain Index (SSI) maps to evaluate localized CXL effects on corneal biomechanics. Numerical modelling based on the finite element method was used to carry out inverse analysis of the human eye to simulate KC and CXL treatments, incorporating regional stiffness variations based on collagen fibril density. SSI maps were generated pre- and post-CXL to assess stiffness changes in treated regions. Results demonstrated that CXL increased corneal stiffness within the treated area, but the extent of stiffness recovery varied with CXL diameter and alignment with the KC cone. Smaller CXL diameters led to higher localized stiffness increases, while misalignment between CXL and KC areas resulted in suboptimal biomechanical restoration. The study highlights the potential of SSI mapping for personalized CXL treatments, enabling precise targeting of biomechanically weakened regions to restore corneal health. This approach contributes to the development of biomechanics-based customization of CXL therapies.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 229\",\"pages\":\"20250234\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380491/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2025.0234\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0234","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

圆锥角膜(KC)是一种进行性角膜扩张,如果不治疗会导致视力损害。角膜胶原交联(CXL)是通过加强角膜生物力学来阻止KC进展的有效治疗方法。然而,目前的CXL治疗缺乏基于区域角膜硬度的定制,这对最佳结果至关重要。本研究介绍了一种利用应力应变指数(SSI)图来评估局部CXL对角膜生物力学的影响的新方法。采用基于有限元的数值模拟方法对人眼进行反分析,模拟KC和CXL治疗过程,并考虑基于胶原纤维密度的区域刚度变化。在cxl前后生成SSI图,以评估处理区域的刚度变化。结果表明,CXL增加了治疗区域内的角膜刚度,但刚度恢复的程度随CXL直径和与KC锥的对齐程度而变化。较小的CXL直径导致较高的局部刚度增加,而CXL与KC区域之间的不对齐导致不理想的生物力学修复。该研究强调了SSI定位在个性化CXL治疗中的潜力,能够精确靶向生物力学减弱的区域,以恢复角膜健康。这种方法有助于基于生物力学的CXL治疗定制的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating corneal cross-linking using Stress-Strain Index maps: a finite element study.

Keratoconus (KC) is a progressive corneal ectasia leading to visual impairment if untreated. Corneal collagen cross-linking (CXL) is an effective treatment to halt KC progression by strengthening corneal biomechanics. However, current CXL treatments lack customization based on regional corneal stiffness, which is crucial for optimal outcomes. This study introduces a novel approach using Stress-Strain Index (SSI) maps to evaluate localized CXL effects on corneal biomechanics. Numerical modelling based on the finite element method was used to carry out inverse analysis of the human eye to simulate KC and CXL treatments, incorporating regional stiffness variations based on collagen fibril density. SSI maps were generated pre- and post-CXL to assess stiffness changes in treated regions. Results demonstrated that CXL increased corneal stiffness within the treated area, but the extent of stiffness recovery varied with CXL diameter and alignment with the KC cone. Smaller CXL diameters led to higher localized stiffness increases, while misalignment between CXL and KC areas resulted in suboptimal biomechanical restoration. The study highlights the potential of SSI mapping for personalized CXL treatments, enabling precise targeting of biomechanically weakened regions to restore corneal health. This approach contributes to the development of biomechanics-based customization of CXL therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信