Pim A de Jong, Daniel Bos, Huiberdina L Koek, Pieter T Deckers, Netanja I Harlianto, Ynte M Ruigrok, Wilko Spiering, Jaco Zwanenburg, Willem P Th M Mali
{"title":"颈动脉虹吸作为脑保护的搏动调节剂:动脉钙化形成的作用。","authors":"Pim A de Jong, Daniel Bos, Huiberdina L Koek, Pieter T Deckers, Netanja I Harlianto, Ynte M Ruigrok, Wilko Spiering, Jaco Zwanenburg, Willem P Th M Mali","doi":"10.3390/jpm15080356","DOIUrl":null,"url":null,"abstract":"<p><p>A healthy vasculature with well-regulated perfusion and pulsatility is essential for the brain. One vascular structure that has received little attention is the carotid siphon. The proximal portion of the siphon is stiff due to the narrow location in the skull base, whilst the distal portion is highly flexible. This flexible part in combination with the specific curves lead to lower pulsatility at the cost of energy deposition in the arterial wall. This deposited energy contributes to damage and calcification. Severe siphon calcification stiffens the distal part of the siphon, leading to less damping of the pulsatility. Increased blood flow pulsatility is a possible cause of stroke and cognitive disorders. In this review, based on comprehensive multimodality imaging, we first describe the anatomy and physiology of the carotid siphon. Subsequently, we review the in vivo imaging data, which indeed suggest that the siphon attenuates pulsatility. Finally, the data as available in the literature are shown to provide convincing evidence that severe siphon calcifications and the calcification pattern are linked to incident stroke and dementia. Interventional studies are required to test whether this association is causal and how an assessment of pulsatility and the siphon calcification pattern can improve personalized medicine, working to prevent and treat brain disease.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387167/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation.\",\"authors\":\"Pim A de Jong, Daniel Bos, Huiberdina L Koek, Pieter T Deckers, Netanja I Harlianto, Ynte M Ruigrok, Wilko Spiering, Jaco Zwanenburg, Willem P Th M Mali\",\"doi\":\"10.3390/jpm15080356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A healthy vasculature with well-regulated perfusion and pulsatility is essential for the brain. One vascular structure that has received little attention is the carotid siphon. The proximal portion of the siphon is stiff due to the narrow location in the skull base, whilst the distal portion is highly flexible. This flexible part in combination with the specific curves lead to lower pulsatility at the cost of energy deposition in the arterial wall. This deposited energy contributes to damage and calcification. Severe siphon calcification stiffens the distal part of the siphon, leading to less damping of the pulsatility. Increased blood flow pulsatility is a possible cause of stroke and cognitive disorders. In this review, based on comprehensive multimodality imaging, we first describe the anatomy and physiology of the carotid siphon. Subsequently, we review the in vivo imaging data, which indeed suggest that the siphon attenuates pulsatility. Finally, the data as available in the literature are shown to provide convincing evidence that severe siphon calcifications and the calcification pattern are linked to incident stroke and dementia. Interventional studies are required to test whether this association is causal and how an assessment of pulsatility and the siphon calcification pattern can improve personalized medicine, working to prevent and treat brain disease.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm15080356\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15080356","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation.
A healthy vasculature with well-regulated perfusion and pulsatility is essential for the brain. One vascular structure that has received little attention is the carotid siphon. The proximal portion of the siphon is stiff due to the narrow location in the skull base, whilst the distal portion is highly flexible. This flexible part in combination with the specific curves lead to lower pulsatility at the cost of energy deposition in the arterial wall. This deposited energy contributes to damage and calcification. Severe siphon calcification stiffens the distal part of the siphon, leading to less damping of the pulsatility. Increased blood flow pulsatility is a possible cause of stroke and cognitive disorders. In this review, based on comprehensive multimodality imaging, we first describe the anatomy and physiology of the carotid siphon. Subsequently, we review the in vivo imaging data, which indeed suggest that the siphon attenuates pulsatility. Finally, the data as available in the literature are shown to provide convincing evidence that severe siphon calcifications and the calcification pattern are linked to incident stroke and dementia. Interventional studies are required to test whether this association is causal and how an assessment of pulsatility and the siphon calcification pattern can improve personalized medicine, working to prevent and treat brain disease.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.