{"title":"机器学习在紧急护理中用于心电图(EKG)的个性化预测。","authors":"Hairong Wang, Xingyu Zhang","doi":"10.3390/jpm15080358","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Electrocardiograms (EKGs) are essential tools in emergency medicine, often used to evaluate chest pain, dyspnea, and other symptoms suggestive of cardiac dysfunction. Yet, EKGs are not universally administered to all emergency department (ED) patients. Understanding and predicting which patients receive an EKG may offer insights into clinical decision making, resource allocation, and potential disparities in care. This study examines whether integrating structured clinical data with free-text patient narratives can improve prediction of EKG utilization in the ED. <b>Methods</b>: We conducted a retrospective observational study to predict electrocardiogram (EKG) utilization using data from 13,115 adult emergency department (ED) visits in the nationally representative 2021 National Hospital Ambulatory Medical Care Survey-Emergency Department (NHAMCS-ED), leveraging both structured features-demographics, vital signs, comorbidities, arrival mode, and triage acuity, with the most influential selected via Lasso regression-and unstructured patient narratives transformed into numerical embeddings using Clinical-BERT. Four supervised learning models-Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) and Extreme Gradient Boosting (XGB)-were trained on three inputs (structured data only, text embeddings only, and a late-fusion combined model); hyperparameters were optimized by grid search with 5-fold cross-validation; performance was evaluated via AUROC, accuracy, sensitivity, specificity and precision; and interpretability was assessed using SHAP values and Permutation Feature Importance. <b>Results</b>: EKGs were administered in 30.6% of adult ED visits. Patients who received EKGs were more likely to be older, White, Medicare-insured, and to present with abnormal vital signs or higher triage severity. Across all models, the combined data approach yielded superior predictive performance. The SVM and LR achieved the highest area under the ROC curve (AUC = 0.860 and 0.861) when using both structured and unstructured data, compared to 0.772 with structured data alone and 0.823 and 0.822 with unstructured data alone. Similar improvements were observed in accuracy, sensitivity, and specificity. <b>Conclusions</b>: Integrating structured clinical data with patient narratives significantly enhances the ability to predict EKG utilization in the emergency department. These findings support a personalized medicine framework by demonstrating how multimodal data integration can enable individualized, real-time decision support in the ED.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Personalized Prediction of Electrocardiogram (EKG) Use in Emergency Care.\",\"authors\":\"Hairong Wang, Xingyu Zhang\",\"doi\":\"10.3390/jpm15080358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: Electrocardiograms (EKGs) are essential tools in emergency medicine, often used to evaluate chest pain, dyspnea, and other symptoms suggestive of cardiac dysfunction. Yet, EKGs are not universally administered to all emergency department (ED) patients. Understanding and predicting which patients receive an EKG may offer insights into clinical decision making, resource allocation, and potential disparities in care. This study examines whether integrating structured clinical data with free-text patient narratives can improve prediction of EKG utilization in the ED. <b>Methods</b>: We conducted a retrospective observational study to predict electrocardiogram (EKG) utilization using data from 13,115 adult emergency department (ED) visits in the nationally representative 2021 National Hospital Ambulatory Medical Care Survey-Emergency Department (NHAMCS-ED), leveraging both structured features-demographics, vital signs, comorbidities, arrival mode, and triage acuity, with the most influential selected via Lasso regression-and unstructured patient narratives transformed into numerical embeddings using Clinical-BERT. Four supervised learning models-Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) and Extreme Gradient Boosting (XGB)-were trained on three inputs (structured data only, text embeddings only, and a late-fusion combined model); hyperparameters were optimized by grid search with 5-fold cross-validation; performance was evaluated via AUROC, accuracy, sensitivity, specificity and precision; and interpretability was assessed using SHAP values and Permutation Feature Importance. <b>Results</b>: EKGs were administered in 30.6% of adult ED visits. Patients who received EKGs were more likely to be older, White, Medicare-insured, and to present with abnormal vital signs or higher triage severity. Across all models, the combined data approach yielded superior predictive performance. The SVM and LR achieved the highest area under the ROC curve (AUC = 0.860 and 0.861) when using both structured and unstructured data, compared to 0.772 with structured data alone and 0.823 and 0.822 with unstructured data alone. Similar improvements were observed in accuracy, sensitivity, and specificity. <b>Conclusions</b>: Integrating structured clinical data with patient narratives significantly enhances the ability to predict EKG utilization in the emergency department. These findings support a personalized medicine framework by demonstrating how multimodal data integration can enable individualized, real-time decision support in the ED.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm15080358\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15080358","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Machine Learning for Personalized Prediction of Electrocardiogram (EKG) Use in Emergency Care.
Background: Electrocardiograms (EKGs) are essential tools in emergency medicine, often used to evaluate chest pain, dyspnea, and other symptoms suggestive of cardiac dysfunction. Yet, EKGs are not universally administered to all emergency department (ED) patients. Understanding and predicting which patients receive an EKG may offer insights into clinical decision making, resource allocation, and potential disparities in care. This study examines whether integrating structured clinical data with free-text patient narratives can improve prediction of EKG utilization in the ED. Methods: We conducted a retrospective observational study to predict electrocardiogram (EKG) utilization using data from 13,115 adult emergency department (ED) visits in the nationally representative 2021 National Hospital Ambulatory Medical Care Survey-Emergency Department (NHAMCS-ED), leveraging both structured features-demographics, vital signs, comorbidities, arrival mode, and triage acuity, with the most influential selected via Lasso regression-and unstructured patient narratives transformed into numerical embeddings using Clinical-BERT. Four supervised learning models-Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) and Extreme Gradient Boosting (XGB)-were trained on three inputs (structured data only, text embeddings only, and a late-fusion combined model); hyperparameters were optimized by grid search with 5-fold cross-validation; performance was evaluated via AUROC, accuracy, sensitivity, specificity and precision; and interpretability was assessed using SHAP values and Permutation Feature Importance. Results: EKGs were administered in 30.6% of adult ED visits. Patients who received EKGs were more likely to be older, White, Medicare-insured, and to present with abnormal vital signs or higher triage severity. Across all models, the combined data approach yielded superior predictive performance. The SVM and LR achieved the highest area under the ROC curve (AUC = 0.860 and 0.861) when using both structured and unstructured data, compared to 0.772 with structured data alone and 0.823 and 0.822 with unstructured data alone. Similar improvements were observed in accuracy, sensitivity, and specificity. Conclusions: Integrating structured clinical data with patient narratives significantly enhances the ability to predict EKG utilization in the emergency department. These findings support a personalized medicine framework by demonstrating how multimodal data integration can enable individualized, real-time decision support in the ED.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.