Floriana Jessica Di Paola, Giulia Calafato, Pier Paolo Piccaluga, Giovanni Tallini, Kerry Jane Rhoden
{"title":"用于转化研究和精准医学的患者来源类器官生物库:挑战和未来展望。","authors":"Floriana Jessica Di Paola, Giulia Calafato, Pier Paolo Piccaluga, Giovanni Tallini, Kerry Jane Rhoden","doi":"10.3390/jpm15080394","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, patient-derived organoids (PDOs) have emerged as powerful in vitro models that closely recapitulate the histological, genetic, and functional features of their parental primary tissues, representing a ground-breaking tool for cancer research and precision medicine. This advancement has led to the development of living PDO biobanks, collections of organoids derived from a wide range of tumor types and patient populations, which serve as essential platforms for drug screening, biomarker discovery, and functional genomics. The classification and global distribution of these biobanks reflect a growing international effort to standardize protocols and broaden accessibility, supporting both basic and translational research. While their relevance to personalized medicine is increasingly recognized, the establishment and maintenance of PDO biobanks remain technically demanding, particularly in terms of optimizing long-term culture conditions, preserving sample viability, and mimicking the tumor microenvironment. In this context, this review provides an overview of the classification and worldwide distribution of tumor and paired healthy tissue-specific PDO biobanks, explores their translational applications, highlights recent advances in culture systems and media formulations, and discusses current challenges and future perspectives for their integration into clinical practice.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387782/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patient-Derived Organoid Biobanks for Translational Research and Precision Medicine: Challenges and Future Perspectives.\",\"authors\":\"Floriana Jessica Di Paola, Giulia Calafato, Pier Paolo Piccaluga, Giovanni Tallini, Kerry Jane Rhoden\",\"doi\":\"10.3390/jpm15080394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, patient-derived organoids (PDOs) have emerged as powerful in vitro models that closely recapitulate the histological, genetic, and functional features of their parental primary tissues, representing a ground-breaking tool for cancer research and precision medicine. This advancement has led to the development of living PDO biobanks, collections of organoids derived from a wide range of tumor types and patient populations, which serve as essential platforms for drug screening, biomarker discovery, and functional genomics. The classification and global distribution of these biobanks reflect a growing international effort to standardize protocols and broaden accessibility, supporting both basic and translational research. While their relevance to personalized medicine is increasingly recognized, the establishment and maintenance of PDO biobanks remain technically demanding, particularly in terms of optimizing long-term culture conditions, preserving sample viability, and mimicking the tumor microenvironment. In this context, this review provides an overview of the classification and worldwide distribution of tumor and paired healthy tissue-specific PDO biobanks, explores their translational applications, highlights recent advances in culture systems and media formulations, and discusses current challenges and future perspectives for their integration into clinical practice.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387782/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm15080394\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15080394","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Patient-Derived Organoid Biobanks for Translational Research and Precision Medicine: Challenges and Future Perspectives.
Over the past decade, patient-derived organoids (PDOs) have emerged as powerful in vitro models that closely recapitulate the histological, genetic, and functional features of their parental primary tissues, representing a ground-breaking tool for cancer research and precision medicine. This advancement has led to the development of living PDO biobanks, collections of organoids derived from a wide range of tumor types and patient populations, which serve as essential platforms for drug screening, biomarker discovery, and functional genomics. The classification and global distribution of these biobanks reflect a growing international effort to standardize protocols and broaden accessibility, supporting both basic and translational research. While their relevance to personalized medicine is increasingly recognized, the establishment and maintenance of PDO biobanks remain technically demanding, particularly in terms of optimizing long-term culture conditions, preserving sample viability, and mimicking the tumor microenvironment. In this context, this review provides an overview of the classification and worldwide distribution of tumor and paired healthy tissue-specific PDO biobanks, explores their translational applications, highlights recent advances in culture systems and media formulations, and discusses current challenges and future perspectives for their integration into clinical practice.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.