Amato Infante, Alessandro Perna, Sabrina Chiloiro, Giammaria Marziali, Matia Martucci, Luigi Demarchis, Biagio Merlino, Luigi Natale, Simona Gaudino
{"title":"个性化放射对话的人工智能:RadioBot对精确驱动医疗实践的影响。","authors":"Amato Infante, Alessandro Perna, Sabrina Chiloiro, Giammaria Marziali, Matia Martucci, Luigi Demarchis, Biagio Merlino, Luigi Natale, Simona Gaudino","doi":"10.3390/jpm15080363","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Radiology often presents communication challenges due to its technical complexity, particularly for patients, trainees, and non-specialist clinicians. This study aims to evaluate the effectiveness of RadioBot, an AI-powered chatbot developed on the Botpress platform, in enhancing radiological communication through natural language processing (NLP). <b>Methods:</b> RadioBot was designed to provide context-sensitive responses based on guidelines from the American College of Radiology (ACR) and the Radiological Society of North America (RSNA). It addresses queries related to imaging indications, contraindications, preparation, and post-procedural care. A structured evaluation was conducted with twelve participants-patients, residents, and radiologists-who assessed the chatbot using a standardized quality and satisfaction scale. <b>Results:</b> The chatbot received high satisfaction scores, particularly from patients (mean = 4.425) and residents (mean = 4.250), while radiologists provided more critical feedback (mean = 3.775). Users appreciated the system's clarity, accessibility, and its role in reducing informational bottlenecks. The perceived usefulness of the chatbot inversely correlated with the user's level of expertise, serving as an educational tool for novices and a time-saving reference for experts. <b>Conclusions:</b> RadioBot demonstrates strong potential in improving radiological communication and supporting clinical workflows, especially with patients where it plays an important role in personalized medicine by framing radiology data within each individual's cognitive and emotional context, which improves understanding and reduces associated diagnostic anxiety. Despite limitations such as occasional contextual incoherence and limited multimodal capabilities, the system effectively disseminates radiological knowledge. Future developments should focus on enhancing personalization based on user specialization and exploring alternative platforms to optimize performance and user experience.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387673/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence for Individualized Radiological Dialogue: The Impact of RadioBot on Precision-Driven Medical Practices.\",\"authors\":\"Amato Infante, Alessandro Perna, Sabrina Chiloiro, Giammaria Marziali, Matia Martucci, Luigi Demarchis, Biagio Merlino, Luigi Natale, Simona Gaudino\",\"doi\":\"10.3390/jpm15080363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> Radiology often presents communication challenges due to its technical complexity, particularly for patients, trainees, and non-specialist clinicians. This study aims to evaluate the effectiveness of RadioBot, an AI-powered chatbot developed on the Botpress platform, in enhancing radiological communication through natural language processing (NLP). <b>Methods:</b> RadioBot was designed to provide context-sensitive responses based on guidelines from the American College of Radiology (ACR) and the Radiological Society of North America (RSNA). It addresses queries related to imaging indications, contraindications, preparation, and post-procedural care. A structured evaluation was conducted with twelve participants-patients, residents, and radiologists-who assessed the chatbot using a standardized quality and satisfaction scale. <b>Results:</b> The chatbot received high satisfaction scores, particularly from patients (mean = 4.425) and residents (mean = 4.250), while radiologists provided more critical feedback (mean = 3.775). Users appreciated the system's clarity, accessibility, and its role in reducing informational bottlenecks. The perceived usefulness of the chatbot inversely correlated with the user's level of expertise, serving as an educational tool for novices and a time-saving reference for experts. <b>Conclusions:</b> RadioBot demonstrates strong potential in improving radiological communication and supporting clinical workflows, especially with patients where it plays an important role in personalized medicine by framing radiology data within each individual's cognitive and emotional context, which improves understanding and reduces associated diagnostic anxiety. Despite limitations such as occasional contextual incoherence and limited multimodal capabilities, the system effectively disseminates radiological knowledge. Future developments should focus on enhancing personalization based on user specialization and exploring alternative platforms to optimize performance and user experience.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm15080363\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15080363","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Artificial Intelligence for Individualized Radiological Dialogue: The Impact of RadioBot on Precision-Driven Medical Practices.
Background/Objectives: Radiology often presents communication challenges due to its technical complexity, particularly for patients, trainees, and non-specialist clinicians. This study aims to evaluate the effectiveness of RadioBot, an AI-powered chatbot developed on the Botpress platform, in enhancing radiological communication through natural language processing (NLP). Methods: RadioBot was designed to provide context-sensitive responses based on guidelines from the American College of Radiology (ACR) and the Radiological Society of North America (RSNA). It addresses queries related to imaging indications, contraindications, preparation, and post-procedural care. A structured evaluation was conducted with twelve participants-patients, residents, and radiologists-who assessed the chatbot using a standardized quality and satisfaction scale. Results: The chatbot received high satisfaction scores, particularly from patients (mean = 4.425) and residents (mean = 4.250), while radiologists provided more critical feedback (mean = 3.775). Users appreciated the system's clarity, accessibility, and its role in reducing informational bottlenecks. The perceived usefulness of the chatbot inversely correlated with the user's level of expertise, serving as an educational tool for novices and a time-saving reference for experts. Conclusions: RadioBot demonstrates strong potential in improving radiological communication and supporting clinical workflows, especially with patients where it plays an important role in personalized medicine by framing radiology data within each individual's cognitive and emotional context, which improves understanding and reduces associated diagnostic anxiety. Despite limitations such as occasional contextual incoherence and limited multimodal capabilities, the system effectively disseminates radiological knowledge. Future developments should focus on enhancing personalization based on user specialization and exploring alternative platforms to optimize performance and user experience.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.