测试前概率对AI-LVO检测的影响:对临床背景下LVO患病率的系统回顾。

IF 4.3 1区 医学 Q1 NEUROIMAGING
Marta Olivé-Gadea, Jordi Mayol, Manuel Requena, Marc Rodrigo-Gisbert, Federica Rizzo, Alvaro Garcia-Tornel, Renato Simonetti, Francesco Diana, Marian Muchada, Jorge Pagola, David Rodriguez-Luna, Noelia Rodriguez-Villatoro, Marta Rubiera, Carlos A Molina, Alejandro Tomasello, David Hernandez, Marta de Dios Lascuevas, Marc Ribo
{"title":"测试前概率对AI-LVO检测的影响:对临床背景下LVO患病率的系统回顾。","authors":"Marta Olivé-Gadea, Jordi Mayol, Manuel Requena, Marc Rodrigo-Gisbert, Federica Rizzo, Alvaro Garcia-Tornel, Renato Simonetti, Francesco Diana, Marian Muchada, Jorge Pagola, David Rodriguez-Luna, Noelia Rodriguez-Villatoro, Marta Rubiera, Carlos A Molina, Alejandro Tomasello, David Hernandez, Marta de Dios Lascuevas, Marc Ribo","doi":"10.1136/jnis-2025-023775","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rapid identification of large vessel occlusion (LVO) in acute ischemic stroke (AIS) is essential for reperfusion therapy. Screening tools, including Artificial Intelligence (AI) based algorithms, have been developed to accelerate detection but rely heavily on pre-test LVO prevalence. This study aimed to review LVO prevalence across clinical contexts and analyze its impact on AI-algorithm performance.</p><p><strong>Methods: </strong>We systematically reviewed studies reporting consecutive suspected AIS cohorts. Cohorts were grouped into four clinical scenarios based on patient selection criteria: (a) high suspicion of LVO by stroke specialists (direct-to-angiosuite candidates), (b) high suspicion of LVO according to pre-hospital scales, (c) and (d) any suspected AIS without considering severity cut-off in a hospital or pre-hospital setting, respectively. We analyzed LVO prevalence in each scenario and assessed the false discovery rate (FDR) - number of positive studies needed to encounter a false positive, if applying eight commercially available LVO-detecting algorithms.</p><p><strong>Results: </strong>We included 87 cohorts from 80 studies. Median LVO prevalence was: (a) 84% (77-87%), (b) 35% (26-42%), (c) 19% (14-25%), and (d) 14% (8-22%). At high prevalence levels: (a) FDR ranged between 0.007 (1 false positive in 142 positives) and 0.023 (1 in 43), whereas in low prevalence scenarios (Ccand d), FDR ranged between 0.168 (1 in 6) and 0.543 (over 1 in 2).</p><p><strong>Conclusion: </strong>To ensure meaningful clinical impact, AI algorithms must be evaluated within the specific populations and care pathways where they are applied.</p>","PeriodicalId":16411,"journal":{"name":"Journal of NeuroInterventional Surgery","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of pre-test probability on AI-LVO detection: a systematic review of LVO prevalence across clinical contexts.\",\"authors\":\"Marta Olivé-Gadea, Jordi Mayol, Manuel Requena, Marc Rodrigo-Gisbert, Federica Rizzo, Alvaro Garcia-Tornel, Renato Simonetti, Francesco Diana, Marian Muchada, Jorge Pagola, David Rodriguez-Luna, Noelia Rodriguez-Villatoro, Marta Rubiera, Carlos A Molina, Alejandro Tomasello, David Hernandez, Marta de Dios Lascuevas, Marc Ribo\",\"doi\":\"10.1136/jnis-2025-023775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Rapid identification of large vessel occlusion (LVO) in acute ischemic stroke (AIS) is essential for reperfusion therapy. Screening tools, including Artificial Intelligence (AI) based algorithms, have been developed to accelerate detection but rely heavily on pre-test LVO prevalence. This study aimed to review LVO prevalence across clinical contexts and analyze its impact on AI-algorithm performance.</p><p><strong>Methods: </strong>We systematically reviewed studies reporting consecutive suspected AIS cohorts. Cohorts were grouped into four clinical scenarios based on patient selection criteria: (a) high suspicion of LVO by stroke specialists (direct-to-angiosuite candidates), (b) high suspicion of LVO according to pre-hospital scales, (c) and (d) any suspected AIS without considering severity cut-off in a hospital or pre-hospital setting, respectively. We analyzed LVO prevalence in each scenario and assessed the false discovery rate (FDR) - number of positive studies needed to encounter a false positive, if applying eight commercially available LVO-detecting algorithms.</p><p><strong>Results: </strong>We included 87 cohorts from 80 studies. Median LVO prevalence was: (a) 84% (77-87%), (b) 35% (26-42%), (c) 19% (14-25%), and (d) 14% (8-22%). At high prevalence levels: (a) FDR ranged between 0.007 (1 false positive in 142 positives) and 0.023 (1 in 43), whereas in low prevalence scenarios (Ccand d), FDR ranged between 0.168 (1 in 6) and 0.543 (over 1 in 2).</p><p><strong>Conclusion: </strong>To ensure meaningful clinical impact, AI algorithms must be evaluated within the specific populations and care pathways where they are applied.</p>\",\"PeriodicalId\":16411,\"journal\":{\"name\":\"Journal of NeuroInterventional Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroInterventional Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jnis-2025-023775\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroInterventional Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnis-2025-023775","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:快速识别急性缺血性卒中(AIS)大血管闭塞(LVO)对再灌注治疗至关重要。包括基于人工智能(AI)的算法在内的筛选工具已经开发出来,以加速检测,但严重依赖于检测前的LVO患病率。本研究旨在回顾临床背景下LVO的流行情况,并分析其对ai算法性能的影响。方法:我们系统地回顾了报道连续疑似AIS队列的研究。根据患者选择标准,将队列分为四种临床情景:(a)卒中专家(直接进入血管组的候选人)高度怀疑LVO, (b)根据院前量表高度怀疑LVO, (c)和(d)在不考虑医院或院前设置的严重程度临界值的情况下任何疑似AIS。我们分析了每种情况下的LVO患病率,并评估了错误发现率(FDR)——如果应用八种市售的LVO检测算法,则需要遇到假阳性的阳性研究数量。结果:我们纳入了来自80项研究的87个队列。LVO患病率是中位数:(a) 84% (77 - 87%), (b) 35% (26 - 42%), (c) 19%(14 - 25%),和(d) 14%(8 - 22%)。在高流行水平:(a) FDR范围在0.007(142例阳性中有1例假阳性)和0.023(43例中有1例假阳性)之间,而在低流行情况下(c和d), FDR范围在0.168(1 / 6)和0.543(超过1 / 2)之间。结论:为了确保有意义的临床影响,必须在应用人工智能算法的特定人群和护理途径中对其进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of pre-test probability on AI-LVO detection: a systematic review of LVO prevalence across clinical contexts.

Background: Rapid identification of large vessel occlusion (LVO) in acute ischemic stroke (AIS) is essential for reperfusion therapy. Screening tools, including Artificial Intelligence (AI) based algorithms, have been developed to accelerate detection but rely heavily on pre-test LVO prevalence. This study aimed to review LVO prevalence across clinical contexts and analyze its impact on AI-algorithm performance.

Methods: We systematically reviewed studies reporting consecutive suspected AIS cohorts. Cohorts were grouped into four clinical scenarios based on patient selection criteria: (a) high suspicion of LVO by stroke specialists (direct-to-angiosuite candidates), (b) high suspicion of LVO according to pre-hospital scales, (c) and (d) any suspected AIS without considering severity cut-off in a hospital or pre-hospital setting, respectively. We analyzed LVO prevalence in each scenario and assessed the false discovery rate (FDR) - number of positive studies needed to encounter a false positive, if applying eight commercially available LVO-detecting algorithms.

Results: We included 87 cohorts from 80 studies. Median LVO prevalence was: (a) 84% (77-87%), (b) 35% (26-42%), (c) 19% (14-25%), and (d) 14% (8-22%). At high prevalence levels: (a) FDR ranged between 0.007 (1 false positive in 142 positives) and 0.023 (1 in 43), whereas in low prevalence scenarios (Ccand d), FDR ranged between 0.168 (1 in 6) and 0.543 (over 1 in 2).

Conclusion: To ensure meaningful clinical impact, AI algorithms must be evaluated within the specific populations and care pathways where they are applied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
14.60%
发文量
291
审稿时长
4-8 weeks
期刊介绍: The Journal of NeuroInterventional Surgery (JNIS) is a leading peer review journal for scientific research and literature pertaining to the field of neurointerventional surgery. The journal launch follows growing professional interest in neurointerventional techniques for the treatment of a range of neurological and vascular problems including stroke, aneurysms, brain tumors, and spinal compression.The journal is owned by SNIS and is also the official journal of the Interventional Chapter of the Australian and New Zealand Society of Neuroradiology (ANZSNR), the Canadian Interventional Neuro Group, the Hong Kong Neurological Society (HKNS) and the Neuroradiological Society of Taiwan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信